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WELCOME 

 

 

We would like to welcome you to IWOBIP’18, the 2nd International Workshop on Bilevel 
Programming. After the first edition in 2016 held in Monterrey, Mexico in 2016, IWOBIP’18 
will take place at INRIA Lille-Nord Europe, France from June 18 to 22, 2018. 

Like the previous edition, IWOBIP’18 aims to provide a forum for scientific exchange and 
cooperation in the field of bilevel programming and related areas. IWOBIP’18 will start by 
lectures on Monday and Tuesday morning given by Didier Aussel and Patrice Marcotte. The 
workshop will start on Tuesday afternoon. This year we have Tobias Harks, Ivana Ljubic and 
Miland Tambe as plenary speakers and a set of 52 presentations. 

We would like to thank Nathalie Bonte, Brigitte Foncez, Corinne Jamroz and Christine Yvoz for 
their administrative support. 

We would also like to thank Centrale Lille, CNRS, CRIStAL (Centre de Recherche en 
Informatique Signal et Automatique de Lille), INRIA, PGMO (Programme Gaspard Monge – 
Fondation Jacque Hadamard), ROADEF (the French Operations Research Society) and the 
Région des Hauts-de-France for being co-sponsors of this event. 

We wish all participants a very fruitful conference. 

 

Luce Brotcorne and Martine Labbé 

  



Plenary speaker :    Milind Tambe 

      Helen N. and Emmett H. Jones Professor in Engineering 
University of Southern California 

Multiagent Systems Research for Social Goods: The Role of Bilevel Programming 

With the maturing of AI and multiagent systems research, we have a tremendous opportunity 
to direct these advances towards addressing complex societal problems. One key multiagent 
systems challenge that cuts across multiple of these problem areas is that of effectively 
deploying limited intervention resources. I will highlight our research advances rooted in 
computational game theory in addressing this challenge across three key problem areas; and 
in particular highlight the role of bilevel programming to address Stackelberg game models. 
First, I will focus on public safety and security, and outline our contribution in introducing and 
using the Stackelberg security games model for effectively allocating limited security 
resources. Security games models been used by agencies such as the US Coast Guard, the US 
Federal Air Marshals Service and others to assist in the protection of ports, airports, flights 
and other critical infrastructure. Second, I will focus on conservation and illustrate the use of 
green security games to allocate limited resources in protecting endangered wildlife. 
Advances in adversary modeling in these games -- models learned from past poaching data -- 
have helped removal of snares and arrests of poachers in national parks in Uganda, potentially 
saving endangered animals. Third, for public health, I will outline challenges of using limited 
resources for spreading health information in low resource communities, and algorithms 
based on games against nature. Our new algorithms for influence maximization, piloted in 
homeless shelters in Los Angeles, show significant improvements over traditional methods in 
harnessing social networks to spread HIV-related information among homeless youth. I will 
also point to directions for future work, illustrating the significant potential of AI for social 
good. 

  



Plenary speaker :    Ivana Ljubic  

   ESSEC Business School, Paris 
 

New Branch-and-Cut Algorithms for Mixed-Integer Bilevel Linear Programs 

In this talk we focus on new branch-and-cut (B&C) algorithms for dealing with mixed-integer 
bilevel linear programs (MIBLPs). MIBLPs constitute a significant family of bilevel optimization 
problems, where all objective functions and constraints are linear, and some/all variables are 
required to take integer values. We first consider a general case in which the proposed B&C 
scheme relies on intersection cuts derived from feasible-free convex sets, see [1,2]. Our B&C 
scheme is finitely-convergent in case both the leader and the follower problems are pure 
integer. In addition, it is capable of dealing with continuous variables both in the leader and 
in follower problems—provided that the leader variables influencing follower’s decisions are 
integer and bounded. Our new algorithm consistently outperforms (often by a large margin) 
all alternative state-of-the-art methods from the literature, including methods which exploit 
problem specific information for special instance classes. In particular, it allows to solve to 
optimality more than 300 previously unsolved instances from literature. We then focus on a 
subfamily of MIBLPs in which the leader and follower typically share a set of items, and the 
leader can select some items and interdict their usage by the follower. The only constraints in 
the follower subproblem involving leader decision variables impose that, if an interdiction 
variable is selected by the leader, then certain actions of the follower are inhibited. 
Interdiction Problems, Blocker Problems, Critical Node/Edge Detection Problems are some 
examples satisfying the later condition. We show that, in case the follower subproblem 
satisfies monotonicity property, a family of "interdiction-cuts" can be derived resulting in a 
more efficient B&C scheme. Computational results are reported for the (multidimensional) 
knapsack interdiction and the maximum clique interdiction problems, see [3,4]. 

Literature: 

[1] M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, On the Use of Intersection Cuts for Bilevel 
Optimization, Mathematical Programming, online first, 2017, DOI 10.1007/s10107-017-
1189-5 

[2] M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, A new general-purpose algorithm for mixed-
integer bilevel linear programs, Operations Research 65(6): 1615-1637, 2017 

[3] M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: Interdiction Games and Monotonicity, with 
Application to Knapsack Problems, INFORMS Journal on Computing, to appear, 2018 

[4] F. Furini, I. Ljubic. P. San Segundo, S. Martin: The Maximum Clique Interdiction Game, 
submitted, 2018 

  



Plenary speaker :    Tobias Harks 

Institute of Mathematics 
University of Augsburg. 

 

The Continuous Bilevel Network Design Problem 

I will talk about a classical problem in transportation, known as the (bilevel) continuous 
network design problem, CNDP for short. Given a graph for which the latency of each edge 
depends on the ratio of the edge flow and the capacity installed, the goal is to find an optimal 
investment in edge capacities so as to minimize the sum of the routing costs of an induced 
Wardrop equilibrium and the investment costs for installing the edge’s capacities. In this talk, 
I will discuss several classical algorithms for computing provably good solutions together with 
a complexity-theoretic classification of the problem. 

 



Contributed session

Consistent Conjectures Coincide With Optimal

Nash Strategies in the Upper Level Game
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Department of Physics and Mathematics, Universidad Autónoma de Nuevo León (UANL),

slavkamx@gmail.com

Nataliya Kalashnykova
Department of Physics and Mathematics, Universidad Autónoma de Nuevo León (UANL),

nkalash2009@gmail.com

Abstract Conjectural variations equilibrium (CVE) was introduced quite long ago as another
possible solution concept in static games. According to this concept, agents behave as follows:
each agent chooses his/her most favorable action taking into account that every rival’s strategy
is a conjectured function of his/her own strategy.

In [1], a new concept of conjectural variations equilibrium (CVE) was introduced and
investigated, in which the conjectural variations (represented via the influence coefficients of
each agent) affected the structure of the Nash equilibrium.

The detailed story of the highs and lows of the CVE concept is described in [2]. The main
obstacle in the way of admitting this concept is its consistency. The consistency (or, some-
times, “rationality”) of the equilibrium is defined as the coincidence between the conjectural
best response of each agent and the conjectured reaction function of the same.

To cope with a conceptual difficulty arising in many player models, a completely new
approach was proposed as applied later to mixed oligopoly models [2]. Consider a group of n
producers (n ≥ 3) of a homogeneous good with the cost functions fi(qi), i = 1, . . . , n, where
qi ≥ 0 is the output by producer i. Consumers’ demand is described by a demand function
G = G(p), whose argument p is the market clearing price. Active demand D is non-negative
and does not depend upon the price. The equilibrium between the demand and supply for a
given price p is guaranteed by the following balance equality

n∑
i=1

qi = G(p) +D. (1)

Every producer i = 1, . . . , n, chooses her output volume qi ≥ 0 so as to maximize her profit
function πi(p, qi) = p · qi− fi(qi). Now we postulate that the agents (producers) suppose that
their choice of production volumes may affect the price value p. The latter assumption could
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be defined by a conjectured dependence of the price p upon the output values qi. If so, the
first order maximum condition to describe the equilibrium would have the form:

∂πi
∂qi

= p+ qi ·
∂p

∂qi
− f ′i(qi)

{
= 0, if qi > 0;

≤ 0, if qi = 0,
for i = 1, . . . , n. (2)

Thus, we see that to describe the agent’s behavior, we need to evaluate the behavior of
the derivative ∂p/∂qi = −vi rather than the functional dependence of p upon qi. Then the
optimality condition (2) is reduced to{

p = viqi + bi + aiqi, if qi > 0;

p ≤ bi, if qi = 0.
(3)

Definition 1. A collection (p, q1, . . . , qn) is called an exterior equilibrium state for given
influence coefficients (v1, . . . , vn), if the market is balanced, i.e., equality (1) holds, and for
each i the maximum conditions (3) are valid.

We assume the following properties of the model’s data.
A1. The demand function G = G(p) ≥ 0 is defined for p ∈ (0,+∞), being non-increasing
and continuously differentiable.
A2. For each i, the cost function fi is quadratic and fi(0) = 0, i.e.,

fi(qi) = (1/2)aiq
2
i + biqi, where ai > 0, bi ≥ 0, i = 1, . . . , n. (4)

A3. For the price value p0 = max1≤j≤n bj , the following estimate holds:

n∑
i=1

p0 − bi
ai

< G(p0). (5)

Now one can prove the following
Theorem 1. Under assumptions A1, A2, and A3, for any D ≥ 0, vi ≥ 0, i = 1, . . . , n, there
exists uniquely the exterior equilibrium (p, q1, . . . , qn) depending continuously upon the param-
eters (D, v1, . . . , vn). The equilibirum price p = p(D, v1, . . . , vn) as a function of these param-
eters is differentiable with respect to D and vi, i = 1, . . . , n. Moreover, p(D, v1, . . . , vn) > p0,
and

∂p

∂D
=

1∑n
i=1

1
vi+ai

−G′(p)
. (6)

Now having formula (6) in mind and following the ideas of [2]-[3], we introduce the
Consistency Criterion. At the exterior equilibrium (p, q1, . . . , qn), the influence coefficients
vk, k = 1, . . . , n, are referred to as consistent if the equalities below hold:

vk =
1∑n

i=1,i 6=k
1

vi+ai
−G′(p)

, k = 1, . . . , n. (7)

Now we are in a position to define the concept of interior equilibrium.
Definition 2. A collection (p, q1, . . . , qn, v1, . . . , vn) is called an interior equilibrium state, if for
the considered influence coefficients, the collection (p, q1, . . . , qn) is the exterior equilibrium,
and the consistency criterion is valid for all k = 1, . . . , n. The interior equilibrium existence
result is as follows:
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Theorem 2. Under assumptions A1, A2, and A3, there exists an interior equilibrium state.
Theorem 1 allows us to define the following game Γ = (N,V,Π, D), which will be called

the upper level game. Here, D is a (fixed) value of the active demand, N = {1, . . . , n} is
the set of the same players as in the above-described model, V = Rn

+ represents the set of
possible strategies, i.e., vectors of conjectures v = (v1, . . . , vn) ∈ Rn

+ accepted by the players,
and finally, Π = Π(v) = (π1, . . . , πn) is the collection of the payoff values defined (uniquely
by Theorem 1) for the strategy vector v.

Now the main results of this talk are as follows. In general, the Cournot conjectures are not
consistent in our single commodity market model. In other words, the Cournot conjectures
vi = −p′(G) do not usually satisfy the (nonlinear) consistency system (7). However, in the
upper level game introduced above, the consistent conjectures, determined by (7) provide the
Nash equilibrium. The theorem below was established in [3]:
Theorem 3. The consistent influence coefficients vk, k = 1, . . . , n, determined as the unique
(for a fixed p) solution of system (7) form a vector of the Nash equilibrium in the upper level
game.

Since the upper-level-game strategies set V = Rn
+ is unbounded, the existence of at least

one Cournot-Nash equilibrium state in this game is by no means easy to check. The fol-
lowing two results (under some extra assumptions) guarantee that the existence of interior
equilibrium in the original oligopoly implies the existence of Nash equilibrium in the upper
level.
Theorem 4. If, in addition to assumptions A1–A3, the demand function G is concave, then
the consistency criterion for the original oligopoly is a necessary and sufficient condition for
the collection of conjectures v = (v1, . . . , vn) to provide a Cournot-Nash equilibrium state in
the upper level game.

As the concavity of the demand function might be a too restrictive condition, the next
theorem relaxes it by replacing the latter with the Lipschitz-continuity of the derivative G′(p).
Theorem 5. Suppose that apart from assumptions A1–A3, the demand function’s derivative
is Lipschitz- continuous. In more detail, for assume that for any p1 > 0 and p2 > 0 the
following inequality holds:

|G′(p1)−G′(p2)| ≤
1

2s2G(p0)
|p1 − p2|, (8)

where s = max{a1, . . . , an}, and the price value p0 is defined in assumption A3. Then, the
consistency criterion for the original oligopoly is a necessary and sufficient condition for the
collection of influence conjectures v = (v1, . . . , vn) to be a Cournot-Nash equilibrium in the
upper level game.

Keywords: Consistency, Conjectural variations equilibrium, Upper level game
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2024.
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Contributed session

Constraint qualifications for parametrized

optimization problems and applications to

multi-leader-follower games

Anton Svensson∗

CMM , Universidad de Chile, asvensson@dim.uchile.cl

Didier Aussel
Lab PROMES, Université de Perpignan, aussel@univ-perp.fr

Abstract Parametric optimization problems are very important in applications, for instance,
to define noncoopertive games such as Nash games or Bilevel programs, which are particular
cases of the class of multi-leader-follower games. To ensure that a parametrized convex
optimization problem (convex for each parameter) is equivalent to its parametrized KKT
conditions, one could verify that a constraint qualification is satisfied for each parameter. We
show a simple way for doing so by assuming joint convexity of the parametrized optimization
problem, that is, the functions that define the constraints are convex on the joint vector
composed by a solution and a parameter. We show how this applied for comparing solutions of
a Generalized Nash Equilibrium Problem (GNEP) with the concatenation of KKT conditions
of all players, and the solutions of a multi-leader-follower game and its MPCC reformulation,
obtained by replacing the lower level GNEP by its concatenated KKT conditions.

Keywords: Constraint qualification, Parametric optimization, Joint convexity, Multi-
leader-follower games, Optimality conditions

References

[1] Dempe, S., and J. Dutta, Is bilevel programming a special case of mathematical program
with complementarity constrinats?, Math. Prog. 9 (2012), 37–48.

[2] Ehrenmann, A. , Equilibrium problems with equilibrium constraints with their applica-
tion to electricity markets, PhD thesis, 2004.
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Contributed session

Analysis of a Game of Dice: Bilevel Optimization

Problem under Uncertainty Joining a Markov

Decision Process

Johanna Burtscheidt∗
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Abstract The analysis of stochastic games is an important part of game theory. In such
games, separate rounds are frequently uncorrelated and so they can be described as Markov
chain or Markov Decision Process (MDP). As an example of such stochastic games, we studied
a special game of dice with three dice for two (or more) players. Here each participant has
to choose one of three strategies in every round to maximize its score. In doing so they have
to make their decision without knowing the realization of some randomness, as among other
things the outcome of two dice is unknown. This type of problem can be formulated as a
Bilevel Optimization Problem (BP) under stochastic uncertainty, in which both the leader
and the follower have a lack of information.

We will construct several deterministic bilevel formulations which allow to take risk aver-
sion into account. For a selection of ’good’ strategies, some similar instances of the dice game
will be juxtaposed. In addition to that, we compare performance and complexity of our mod-
ells to ordinary MDP formulations of the given problem. The objective is to compare two
known mathematical methods for a stochastic decision game on different point of views.

Keywords: Markov Decision Process, Bilevel Optimization Problem, Risk Aversion, Un-
certainty
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Contributed session

About Strong Stackelberg Equilibrium in Stochastic
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Abstract In this work we face the problem of computing a strong Stackelberg equilibrium
(SSE) in a stochastic game (SG). Given a set of states we model a two player perfect infor-
mation dynamic where one of them, called Leader or player A, observes the current state and
decides, possible up to probability distribution f , between a set of available actions. Then
other player, called Follower or player B, observes the strategy of player A and plays his best
response noted by g. We represent a two-person stochastic discrete game G by

G = (S,A,B, Q, rA, rB, βA, βB, τ) .

where S represents the states of the games, A and B represents space of actions of both players.
We denote As and Bs the available set of actions of both players in state s. Q = Qab(z|s)
represents the transition probability of going from a state s to a state z given the actions a
and b were performed by players A and B respectively. rabA (s), rabB (s) represents the one-step
rewards functions depending on the actual state, and the actions performed by the players.
βA and βB are the discount factors for both players. τ represents the number of periods in
the dynamic.

Stochastic games were first introduced by Shapley [1] who also gives the first algorithm
to find Nash Equilibrium in zero-sum SG based on a dynamic programming algorithm. SG
have been used to model interaction in economics, computer networks, and security, among
others applications. Feedback policies are policies depending on the actual state s and time
epoch t. Stationary policies can be defined as feedback policies that do not depend on the
time step. In our setting, players aim to maximize their expected discounted sum of payoffs
from 0 until τ considering feedback and stationary policies.

For the finite horizon setting, Value iteration can be used to find an Strong Stackelberg
equilibrium in feedback policies [2]. In contrast to MDP settings, Stackelberg equilibrium in
stationary policies can be arbitrary suboptimal as is showed in [3]. Authors also provide a
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Mixed integer non linear program to compute a SSE in general SG when players are restricted
to stationary policies. To the best of our knowledge there is no prior work on efficient
algorithms to find stationary strategies in Stackelberg games for τ → +∞ when they exist.

We show that for instances, where the best response of the follower does not depend on
its future values, dynamic programmig based techniques compute the values and the Strong
Stackelberg Strategies in stationary policies. To do so, we define suitable operators which are
monotone and contractive. As a consequence of that we can also show that Policy Iteration
converges to a Stackelberg Equilibrium in stationary policies.

We prove that for the general case it is no always possible to converge to a Stackelberg
Equilibrium via a counterexample. Furthermore, in this counterexample we are able to com-
pute multiple Stackelberg Equilibrium in stationary policies, so the question of computes SSE
in SG in stationary policies remains open.

We discuss about mathematical programming models to compute Strong Stackelberg Equi-
librium. Finally we test computationally a dynamic programming type algorithm to compute
stationary policies forming equilibrium in Security Games.

Keywords: Stochastic Games, Strong Stackelberg Equilibrium, Dynamic Programming
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Abstract
The modern world is highly connected via air travel, enabling infectious diseases to spread

long distances in short periods of time. Epidemics can be mitigated by identifying and isolat-
ing infected travelers before they have the chance to enter into a new population. However,
successful screening of infected passengers is expensive due to personnel and/or new tech-
nology costs, and can not feasibly be conducted on all passengers at all airports. This work
addresses the decision of where to allocate available screening resources in the event of a
novel emerging infectious disease epidemic. Copious studies have focused on either accurately
modeling outbreak dynamics or optimizing outbreak control decisions. However, few efforts
have attempted to bridge these two fields, leaving a gap in the literature for optimization-
based outbreak control models that account for the heterogeneous nature of infectious disease
spreading dynamics.

To address this gap in the literature we propose a bi-level programming formulation to
represent this decision problem. The upper level problem is to identify a feasible resource al-
location strategy which minimizes the impact of the outbreak and is subject to a pre-defined
budget constraint; the lower level problem evaluates a control strategy using a stochastic
dynamic outbreak simulation model. The work builds on previous work which first math-
ematically defined the problem framework [1] and integrated a deterministic version of the
multi-scale simulation model [2].

In this work the lower level model is a stochastic dynamic simulation model designed to
capture the disease spreading process that occurs due to human interactions at both the local
(city) and global (air travel) scale. To model the evolution of an infectious disease within
a city we use a deterministic compartmental model [3], specifically the SEIR model, where
S represents the group of individuals susceptible to the disease, E represents the individuals
who have been infected but are not yet contagious, I represents the individuals that have
been infected and are contagious, and R represents the individuals that have been previously
infected, but are now recovered (can not be infected again). The local outbreak model is
initialized with the proportion of the population in each compartment for each city. A set
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of differential equations with specified transition state parameters is used to quantify the
proportion of the population in each compartment at each point in time, e.g., day. In this
work the local model is applied to each city independently. To model the spread of infection
between cities we developed a global network model. The nodes of the global network are
cities, and the links connect cities based on air traffic data, specifically passenger flow volumes.
The spread of disease between cities is modeled as a stochastic process based on the passenger
flow volume between city pairs, and the likelihood passengers departing a given city are
infected. The final coupled outbreak simulation model captures the evolution of the outbreak
due to spread both within and between cities, and yields the number of individuals in each
compartment at each point in time in every city in the world. The simulation model is further
extended to include a (decision) variable representative of passenger screening at each airport,
and thus provides a means to quantify the impact of various screening policies.

The upper level of the model addresses the problem of selecting a feasible control strategy
which minimizes the total number of infected individuals at a pre-defined time horizon. In
this work a control strategy is defined as a set of airports at which to conduct control, e.g.,
enhanced passenger screening, which is further specified at a given level. Control level are 2-
dimensional variables xi,t indexed by space (airports, denoted by index i) and time (denoted
by index t) bounded between 0 and 1, where xi,t = 1 corresponds to perfect control of
airport i at time t, i.e., all passengers are successfully screened, xi,t = 0 corresponds to no
screening conducted, and values strictly between 0 and 1 corresponds to partial control, where
a fraction of the passengers are screened (or only a fraction of the infectious passengers are
successfully identified). Additionally, implementing control at a given airport incurs a cost,
which is dependent on both the control level and size of the airport, i.e., number of arriving
travelers. In this work we assume a two-part cost function which includes a fixed and variable
cost. The fixed cost assumes a one-off cost for training personnel, purchasing and setting
up new equipment. The variable cost is assumed to capture the daily cost of conducting
passenger screening. The objective is to find the optimal control strategy x? subject to a
budget constraint and accounting for outbreak dynamics.

The proposed problem is challenging due to both the scale of the problem (there are
thousands of airports in the world) and the stochastic dynamic nature of disease outbreaks.
Thus, the focus of this research is to develop a set of solution methods which are both effec-
tive and computationally tractable. In this work a set of proposed heuristics are presented
and evaluated. The first set of heuristics are data driven, and exploit known properties of
the regional network (e.g., population levels), and air traffic network structure (connectivity
indices, etc), while the second set of heuristics utilize outputs from the lower level simula-
tion model to select control strategies. In particular, we propose an algorithmic framework
to explore the lower-level solution space efficiently and approximate airports’ potential in
mitigating the epidemic. This information is then used to construct informed upper-level
solutions. All heuristics are evaluated under a range of outbreak scenarios (i.e., source cities,
outbreak size, etc.) and disease properties (i.e., level of infectiousness, recovery times, etc).
The heuristics performance is quantified using various metrics such as the total number of
individuals infected ever infected at a given point in time. The results provide a means to
rank outbreak control strategies in terms of performance, cost and reliability. Preliminary
results are shown in Figure 1.

In conclusion, this work introduces a novel methodology that captures the stochastic
nature of outbreak dynamics within a control policy evaluation framework, necessary for
effective regional preparedness planning for large scale outbreaks. The problem framework is
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Figure 1. Preliminary Results illustrating the ranking and performance of the proposed heuristics

highly flexible, and applicable to a range of control policies, objectives and outbreak scenarios.
Preliminary results provide insight into the robust design and efficiency of a range of control
strategies, and can help identify the best use of available budget in the event of a biosecurity
episode. It is shown that all proposed allocation strategies out perform the strategy to screen
passengers at the largest airports. There is also an observable decrease in the marginal return
on investment for the best performing heuristics, thus, identifying optimal control policies
is non-trivial. The proposed framework can help in informing policy decisions and resource
spending for epidemic planning. Future work will address sensitivity analysis around outbreak
parameters, planning horizon and the control cost function, as well as extending the model to
a multi-modal mobility network, incorporating local control, and adding a route level control
decision.

Keywords: epidemics, resource allocation, outbreak control
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Abstract We describe capabilities for modeling bilevel and multilevel programs within the
Pyomo modeling software. These capabilities include modeling components that represent
subproblems, modeling transformations for re-expressing models with bilevel structure in
other forms, and optimize bilevel programs with meta-solvers that apply transformations and
then perform optimization on the resulting model. We illustrate the application of Pyomo to
model power grid security problems.
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1 Introduction

Although multilevel problems arise in many applications, few algebraic modeling languages
(AML) have integrated capabilities for expressing these problems. AMLs are high-level pro-
gramming languages for describing and solving mathematical problems, particularly optimization-
related problems. AMLs provide a mechanism for defining variables and generating con-
straints with a concise mathematical representation, which is essential for large-scale, real-
world problems that involve thousands or millions of constraints and variables. GAMS,
YALMIP and Pyomo provide explicit support for modeling bilevel programs. A variety of
other AMLs support the solution of bilevel programs through the expression of Karush-Kuhn-
Tucker conditions and associated reformulations using mixed-complementarity conditions, but
these reformulations must be expressed by the user in these AMLs.

The main point of this paper is to describe modeling techniques in Pyomo that can ex-
press complex multilevel optimization problems. Pyomo is an open-source software package
that supports the definition and solution of optimization applications using the Python lan-
guage [1]. Python is a powerful programming language that has a clear, readable syntax and
intuitive object orientation. Pyomo uses an object-oriented approach for defining models that
contain decision variables, objectives, and constraints.

1



Multilevel models can be easily expressed with Pyomo modeling components for sub-
models, which can be nested in a general manner. Further, Pyomo’s object-oriented design
naturally supports the ability to automate the reformulation of multilevel models into other
forms. In particular, we describe Pyomo’s capabilities for transforming bilevel models for
several broad classes of problems, and we illustrate this capability on a power grid security
application.

2 Modeling Bilevel Programs

The pyomo.bilevel package extends Pyomo by defining a new modeling component: SubModel.
The SubModel component defines a subproblem that represents the lower level decisions in a
bilevel program. This component is like Pyomo’s Block component; any components can be
added to a SubModel object. In general, a submodel is expected to have an objective, one or
more variables and it may define constraints.

The SubModel class generalizes the Block component by including constructor arguments
that denote which variables in the submodel should be considered fixed or variable. When
expressions in a submodel refer to variables defined outside of the submodel, the user needs to
indicate whether these are fixed values defined by an upper-level problem. Fixed variables are
treated as constants within the submodel, but non-fixed variables are defined by the current
submodel or by a lower-level problem.

Consider the following example:

minx,y,v x + y + v
s.t. x + v ≥ 1.5

1 ≤ x ≤ 2
1 ≤ v ≤ 2
maxy,w x + w

y + w ≤ 2.5
1 ≤ y ≤ 2
1 ≤ w ≤ 2

(1)

The following Pyomo model defines four variables, x, v, sub.y and sub.w:

from pyomo.environ import *

from pyomo.bilevel import *

model = ConcreteModel()

model.x = Var(bounds=(1,2))

model.v = Var(bounds=(1,2))

model.sub = SubModel()

model.sub.y = Var(bounds=(1,2))

model.sub.w = Var(bounds=(-1,1))

model.o = Objective(expr=model.x + model.sub.y + model.v)

model.c = Constraint(expr=model.x + model.v >= 1.5)

model.sub.o = Objective(expr=model.x+model.sub.w, sense=maximize)

model.sub.c = Constraint(expr=model.sub.y + model.sub.w <= 2.5)

Variables x and v are declared in the upper-level problem, and v only appears in the upper-
level problem. Variables sub.y and sub.w are declared in the submodel. However, note that
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the sub.y variable appears in the upper-level problem, while the sub.w variable only appears
in the lower-level problem.

3 Bilevel Optimization for Power Grid Security and Resiliency

Expressions in submodels can be linear or nonlinear, convex or nonconvex, continuous or
discontinuous, and more. Additionally, submodels can be nested to an arbitrary degree. Thus,
the range of bilevel programs that can be expressed with Pyomo is quite broad. However, the
real challenge is solving these models.

Pyomo’s supports the structured transformation of models, and this capability can be
applied to transform bilevel and multi-level problems into standard forms. Pyomo’s object-
oriented design allows the transformation of sub-models within a formulation. Additionally,
blocks of constraints can be activated and deactivated, which facilitates in place transforma-
tions that do not require the creation of a separate copy of the original model. Thus, bilevel
models can be transformed and solved, and the resulting solution can be easily mapped back
into the original model.

We describe how these transformations can be applied to reformulate a bilevel formulation
that is used identify worst-case security risks for power grid disruptions (e.g. terrorist attacks
or vandals). The bilevel formulation is used to identify critical system components by finding
the most disruptive attacks given limited attacker resources. The impact of a disruption
is derived from a power flow model, which could be weighted (e.g. to balance equities in
different regions with different network toplogies). Power flow is modeled with a linear DC-
OPF formulation, and transformations can be applied to reformulate this formulation as an
integer program.

We describe how these results are used to support an investment model that prioritizes
mitigation investments (e.g. to mitigate consequences or reduce likelihood of disruptions).
The critical components identified in the bilevel model are prioritized for investments. Finally,
we discuss whether trilevel formulations are suitable for the investment planning problem. We
describe “nested defense” strategies that can be used to maximize the utility of migitation
over a range of possible investment budgets, and discuss the need for multi-year investment
planning.

References
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{kubra.taninmis,arasn,altinel}@boun.edu.tr

Abstract In this paper we consider an extension of the well-known Influence Maximization
Problem (IMP) which deals with finding an initial set of k nodes to initiate a diffusion process
in a social network so that the total number of affected nodes at the end of the process is
maximized. The extension focuses on a competitive variant of IMP where two decision makers
are involved. The first one, the leader, tries to maximize the total influence spread by selecting
the most influential nodes and the second one, the follower, tries to minimize it by deactivating
some of these nodes. The formulated bilevel model is solved by complete enumeration for
small-sized instances and by a matheuristic for large-sized instances.

Keywords: Influence maximization, Stackelberg game, Stochastic optimization

1 Introduction

Influence Maximization Problem (IMP) is the problem of finding an initial set of k nodes
to start a diffusion process in a social network so that the total number of affected nodes
at the end of the process is maximized. It finds many application areas including viral
marketing and disease outbreak detection. The most common diffusion models in the IMP
literature are Linear Threshold (LT), Independent Cascade (IC), and their extensions. The
problem is known to be NP-hard under both models [1], and the LT diffusion model gives
rise to a stochastic optimization problem due to the uncertainty in the threshold values of
the nodes. The problem considered in this study is a competitive variant of IMP which can
be considered as a Stackelberg game. The leader of the game tries to maximize its influence
spread by selecting the most influential nodes while the follower tries to minimize the spread
by deactivating some of these nodes. Solving the problem of the leader helps to understand
which nodes are more prone to be targeted by undesired influence spread initiators.

2 Problem Definition

The problem we address is a two player IMP. Given a directed graph G(V,A), the leader
decides a subset S ⊂ V of nodes to activate in order to initiate campaign. Then, the follower
with perfect information on S deactivates some nodes P ⊂ S so that they cannot influence
other nodes, which has the consequence of keeping the number of activated nodes at a low
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level. After the follower’s decision, the nodes in S \ P influence other nodes in the network
according to the well-known Linear Threshold (LT) diffusion model where a node becomes
influenced only if the total weight on the incoming arcs from its influenced neighbors exceeds
a random threshold value. The goal of the leader is to maximize the expected number of
influenced nodes whereas the follower tries to minimize the same performance measure. We
refer to the problem as the Influence Maximization Problem with Deactivation (IMPD). Since
the node threshold values in the LT model are uncertain, our problem becomes a stochastic
optimization problem. However, a deterministic equivalent formulation can be developed by
enumerating each possible realization of the node threshold values. We provide the definition
of the parameters and decision variables used in the formulation followed by the model.

Parameters:
wij : weight of arc (i, j), 0 if the arc does not exist
θir : influence threshold of node i in threshold realization r ∈ R
pr : probability of threshold realization r ∈ R
ci : leader’s cost of activating node i ∈ V
ei : follower’s cost of deactivating node i ∈ V
c : leader’s budget to activate nodes
e : follower’s budget to deactivate nodes

Decision variables:
Xi : 1 if node i is activated by the leader; 0 otherwise
Yi : 1 if node i is deactivated by the follower; 0 otherwise
Uir : 1 if node i is influenced in threshold realization r; 0 otherwise

z∗D = max
X

z(X) (1)

s.t.
∑
i∈V

ciXi ≤ c (2)

Xi ∈ {0, 1} i ∈ V (3)

where z(X) is the optimal objective value of the problem

z(X) = min
Y,U

∑
r∈R

∑
i∈V

prUir (4)

s.t.
∑
i∈V

eiYi ≤ e (5)

Yi ≤ Xi i ∈ V (6)

Uir ≥ Xi − Yi i ∈ V, r ∈ R (7)

Uir + Yi ≥
∑
j∈V

wjiUjr − θir + ε i ∈ V, r ∈ R (8)

Uir, Yi ∈ {0, 1} i ∈ V, r ∈ R (9)

In the model above, (1)–(3) and (4)–(9) are the leader’s upper level problem and the
follower’s lower level problem, respectively. Their objective functions are the same, i.e., the
expected number of influenced nodes over the threshold realization space R, but the sense
of optimization is different. Constraint (2) is the activation budget limit of the leader and
constraint (5) is the deactivation budget limit of the follower. Constraints (6) ensure that a
node cannot be deactivated unless it is activated by the leader. Constraints (7) force the seed
nodes to be influenced when they are not deactivated (Xi = 1, Yi = 0). If the total incoming
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weight to node i from its influenced neighbors exceeds its threshold in realization r and i is
not a deactivated node (Yi = 0), then Uir = 1 in (8) (i.e., i is influenced in realization r).

3 Solution Method and Results

One method to solve discrete bilevel optimization problems is to either enumerate the de-
cisions of the leader if possible or develop a heuristic method performing a search in the
decision space of the leader, and solving the follower’s problem to optimality for each solution
generated in the upper level problem. Since the thresholds in the LT model follow a contin-
uous uniform distribution, it is not possible to enumerate all realizations or scenarios. The
follower’s problem can be approximated in this case using the Sample Average Approximation
(SAA) method [2] which is based on repeated sampling from the scenario space and solving
the problem for each sample.

We propose a Tabu Search (TS) based matheuristic in which the solution space of the
leader is searched and for each solution visited the objective value is estimated using the
SAA method. Only feasible solutions are considered and same solutions are not visited more
than once by means of hash functions due to the costly objective function evaluation. At
each iteration, only a promising subset of the neighboring solutions are considered according
to a potential influence value computed in a preprocessing step (e.g., if a node has smaller
chance to be influenced by the seed nodes, then adding it to the seed improves the current
solution more). Three types of move operators (ADD, DROP and SWAP) are used. Each
move type selects the best feasible and unprecedented solution in that neighborhood. Table
1 presents the results for small test instances where n and m denote the number of nodes and
arcs, respectively. For each size, five problem instances were generated. The second column
shows the average optimality gap between the objective value of the solution provided by
the TS method and the optimal objective value z∗ given by complete enumeration. The last
two columns show the solution times in seconds for both methods. The time limit of the TS
method is set to three hours. The TS-based matheuristic seems to be promising and can be
used for larger instances.

Table 1: Results obtained by the Tabu Search Method and Complete Enumeration

(n,m) Gap(%) z∗ TS Time Enumeration Time

20,40 1.06 8.71 1355 1316
20,80 0.96 11.34 1827 1788
30,90 0.42 17.83 10,800 103,442
30,180 0.00 18.25 10,800 115,485
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mlabbe@ulb.ac.be

Justo Puerto
Department of Statistics and OR - IMUS, University of Seville,

puerto@us.es

Abstract Let be given a graph G = (V,E) whose edge set is partitioned
into a set R of red edges and a set B of blue edges, and assume that red edges
are weighted and form a spanning tree of G. Then, the Bilevel Minimum
Spanning Tree Problem (BMSTP) is that of pricing (i.e., weighting) the
blue edges in such a way that the total weight of the blue edges selected in
a minimum spanning tree of the resulting graph is maximized.

In spite of its interest, no efficient formulations exist for the BMSTP and
no mathematical algorithms have been developed for solving the problem.
In this paper we will present different MILP mathematical formulations for
the BMSTP based on the properties of the MSTP and the bilevel optimiza-
tion. We establish a theoretical and empirical comparison between these
new formulations and we also provide reinforcements that together with a
proper formulation are able to solve medium size random instances on gen-
eral graphs.

Keywords: Minimum Spanning Tree, Bilevel optimization, Stackelberg
game
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Abstract It is well-known that for obtaining feasible solutions of a bi-level programming
problem, the optimal solution of the lower level is needed. But achieving the latter is compli-
cated when the lower level is a very complex problem or it is classified as NP-hard. In some
of these cases obtaining bi-level feasible solutions may be impossible. Hence, what options
do we have for dealing with such difficult problems? In this talk, some related literature is
discussed pointing out the major conclusions and drawbacks found. Also, the appropriateness
of the semi-feasible solutions in some cases is discussed.

Keywords: Bi-Level Programming, semi-feasible solutions, heuristic solutions

1 Background

In the first book devoted to bi-level programming, [1], it is stated that for a fixed leader’s
solution, the follower acts rationally and optimizes its own criterion. Hence, the resulting
pair of leader-follower solutions corresponds to a bi-level feasible one. Most of the papers
devoted to study bi-level problems handle this issue in a proper manner. However, there are
few papers in which the lower level is a hard-to-solve problem. In those cases, the authors
have dealt with it in a particular manner for each problem.

In a personal discussion I had with Professor Bard few years ago about this issue, his
answers were based on the argue that the follower reacts rationally to leader’s decision. Hence,
if the follower has a very complex problem and obtaining the optimal solution is a difficult
task, it is rational to consider that a good enough solution is allowed. Since then, I have
put special attention about this topic. Later, in [2] the bi-level semi-feasible solutions are
properly defined, and in [3] the bi-level attainable solutions are defined. Both definitions are
very similar but they differentiate from each other in a particular characteristic.

2 Objectives of this discussion

This talk has two main objectives. The first one is to show some existing papers that consider
bi-level semi-feasible solutions and the manner they handled with the lower level problem.
Furthermore, the impact of not having the optimal response of the follower for a leader’s
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decision is illustrated with numerical examples. Therefore, it is emphasized the careful that
is needed when dealing with this issue in bi-level problems.

The other objective is to start a discussion with the attendees regarding the options for
solving this kind of problems without loosing mathematical rigour, nor relaxing or simplifying
the studied bi-level problem.

References
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Abstract Nowadays many applications involve decisions that depend on the optimal de-
cisions of other agents. This kind of model has a bi-level structure with many lower level
problems and it is known as single-leader-multi-follower game. An application in eco-park
can be found in [2].

In this contribution we substitute the lower level optimization problems by the stationar-
ity conditions and consider the resulting mathematical program with complementarity con-
straints (MPCC) formulation. We analyze which properties will remain stable under pertur-
bations of the involved functions, as it was done in [1] for bilevel problems. Then, the relation
of the stationary points with these properties and the solutions of the original problem are
presented. Particular cases are analyzed.

Keywords: single-leader-multi-follower game, stability, stationary points
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Abstract The present talk is based on Allevi-Aussel-Riccardi[?] and can be considered as
an extension to the case of an elastic demand of the analytical study initiated in [?, ?]. We
consider a model of pay-as-clear electricity market modeled as a multi-leader-common-follower
game where the lower level represent the regulator of the market (ISO). One of our aim in this
work is to analyse the best response problem of each producer when the demand is actually
composed of a fixed part coupled with an elastic quantity. We also prove that an equilibrium
of the market exists under mild assumptions on the structure of the bid and on the elasticity.
Some numerical experiments on a simplified market model are also provided.

Keywords: Multi-leader-follower game, electricity market, Elastic demand
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Abstract The optimistic (pessimistic) bilevel optimization problem can be modelled as min-
imizing the optimistic (resp. pessimistic) two-level optimal value function:

ϕo(x) := min
y
{F (x, y) : y ∈ Ψ(x)} → min

x∈K
,

resp.
ϕp(x) := max

y
{F (x, y) : y ∈ Ψ(x)} → min

x∈K
,

where
Ψ(x) = {y : g(x, y) ≤ 0, f(x, y) ≤ ϕ(x)}

denotes the set of optimal solutions and ϕ(x) = miny{f(x, y) : g(x, y) ≤ 0} is the optimal
value function of the lower level problem. Topic of the presentation is the formulation of nec-
essary optimality conditions for the optimistic problem using tools from variational analysis
[2] in the case when the bilevel optimization problem is formulated with nonsmooth data.
This generalizes the necessary optimality conditions for continuously differentiable optimistic
bilevel optimization problems presented in [1].

Keywords: optimistic and pessimistic bilevel programming, two-level value functions,
variational analysis, generalized differentiation, optimality conditions.
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Abstract The competitive plant location problem is of current interest to the scientific com-
munity. Several recently published articles about this kind of problems can be found in the
literature. However, most of the papers focus on two competing companies that aim to locate
facilities (r and p, respectively) and to capture the largest proportion of the market. This
sequential problem is known in the literature as the (r|p)− centroid. But there are different
situations in various social, political, economic and financial fields that may require that some
facilities of the existing ones are closed. The literature on these types of problems is limited.
Therefore, we define the problem of the negative (r|p)− centroid where both companies aim
to close facilities that are currently located. Another novelty of this work is that a loyalty of
the customers towards the facilities is considered to make the allocation. That is, customers
are not assigned based on the shortest distance criterion. In addition, to solve the problem
an adaptation of a classical branch and bound algorithm proposed by [1] is proposed. The
computational experimentation indicates that the adapted algorithm is able to solve problems
efficiently and at low computational cost.

Keywords: Competitive Facility Location, Bilevel programming, Delocation, (r/p)-centroid
problem.

1 Introduction

Facility location problems (FLP) are a branch of operations research that arise when real-life
applications in the public and private sector attempt to determine the optimal location of
facilities, such as warehouses, plants, distribution centers, shopping centers, hospitals, post
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offices, among others. In these types of problems, you may have different objectives such
as maximizing the benefits obtained from customers and minimizing costs when locating fa-
cilities and serving customers. Many factors influence the decision to locate a new facility
in a market, but one of the most important factors is related to the existing facilities that
belong to competitors that offer the same or similar services or products. When there is no
competitor in the market, the new facility will be the only supplier of the merchandise or the
service in the market, however, if there are already facilities in the market, the new facility
will have to compete for the customers aiming to maximize its profit or market share.

The Competitive Facility Location problem (CFL) takes place when two or more com-
panies try to enter the market, competing among them to capture the largest proportion of
customers, offering a product or service. This type of problems have been considered from a
bilevel (leader-follower) approach, since they have a natural bilevel programming model. For
example, [2] examined sequential competitive location problems. They divided the problems
into two categories: the (r|Xp)−medianoid problem, in which the leader has p facilities, and
the follower optimally locates r facilities of a set Xp of potential sites; and the (r|p)−centroid
problem, in which the leader locates optimally p facilities knowing that the follower will react
locating r facilities. In the latter problem, there are two firms that try to locate facilities in
a hierarchical way, aiming to maximize their market share (demand); in other words, capture
most of the customers. There is a set of N potential sites, from which the leader locates
p facilities and then from the N − p remaining potential sites the follower selects his/her r
facilities.

2 Problem Statement

Nowadays some markets are prone to suffer an economic contraction caused by some particu-
lar issues. So, when there is an economic downturn the companies are faced with the problem
of not being able to keep all of their facilities operating and have the need to close some of
them. Literature of this type of problems on offshoring (delocation) of competitive facilities
is limited. After an intensive search, only [3] was found.

The problem herein proposed seeks to close already located facilities taking into account
the possible actions of rival companies and the reaction of the customers. We named this
problem as the negative (r|p)− centroid problem, and it is denoted as (r|p)− centroid. An
additional variant is that we consider the assignment of customers to the facilities by taking
into account the loyalty of the customer towards the same company to which it is currently
assigned. That is, it is not necessarily assigned to the nearest located facility, but remains
with the same company as long as there is another facility within a predetermined threshold
value (see figure 1).

This problem is modelled as a as a bilevel program, where first the leader (upper level)
closes p facilities and then, the follower (lower level) closes r facilities, which already are op-
erating in the market. Also, the corresponding valid constraints that allocates the customers
based on their loyalty are added.
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(a) Example of a loyal customer, stays with the
same company

(b) Customer captured by the competition

Figure 1: Loyalty of a customer j−• customer loyalty to the company that he is loyal within
a radius ρj . In gray, a closed installation is denoted.

�- Leader’s facility H- Follower’s facility

3 Proposed algorithm

A first scheme to solve the (r|p)-centroid is based on the algorithm proposed in [1]. This al-
gorithm solves binary bilevel programming problems using a branch and bound scheme. The
idea is to list the nodes of a binary tree associated with the problem of the leader but taking
into account the optimal reaction of the follower. That is, the algorithm tries to find the
best decision of the leader among the feasible bilevel solutions in the inducible region. Partic-
ular properties of the problem are considered and used to improve the algorithms performance.

Computational experimentation have been conducted for testing the algorithm over a set
of randomly created instances. The proposed algorithm has shown to be a good option to
solve the (r|p)-centroid problem. The optimal solutions are found using a low computational
cost. To measure the quality of the solution, a totally enumerative was used.
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Abstract
We consider the problem faced by a service firm that makes decisions with respect to

location and service levels of its facilities, when users patronize the facility minimizing the
sum of travel time, queueing delay, and a random term. This situation can be modeled as a
bilevel program that involves discrete and continuous variables, as well as linear and nonlinear
functions. We design for its solution an approximation algorithm that provides asymptotically
optimal solutions, as well as heuristics that exploit the very structure of the problem.

Keywords: location, bilevel programming, equilibrium, queueing, nonconvex

1 Introduction

While the literature concerning discrete facility location is vast, few studies have focused on
user choice, where the latter frequently involves congestion, either along the paths leading to
a facility, or at the facility itself. Our aim is to provide a model that captures the key features
of congestion and competition within a user choice environment, yielding a bilevel program
where the leader firm’s objective function integrates the stochastic equilibrium resulting from
the choice of locations and the associated service levels.

Beyond the analysis of the model’s theoretical properties, we designed two algorithms,
one based on approximations, and a heuristic. Our work is closely related to that of [1],
who analyze a location model where queueing is explicitly taken into account, while users
are assigned to facilities according to a logit discrete choice model, yielding a mathematical
program involving user-equilibrium constraints. Our model is well suited to a variety of
applications, such as location of shops, restaurants, walk-in clinics, etc., where user flows are
not in direct control of the optimizer, but are dictated by utility maximization principles.

2 Model

Let us consider the problem faced by a firm (a service center, for instance) that makes location
and service level decisions in a bipartite network V = I×J , where a vertex v may correspond
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to either a location (J) or a demand node (I), the latter endowed with demand dv. We
denote by J1 ⊆ J the set of candidate locations for firm A, and by Jc the set of locations
of its competitors. The aim of the emerging firm is to maximize the number of customers
to attract, constrained by a budget B that can be spent on building facilities or improving
service rate. Facilities are modeled as M/M/1/K queues with the waiting time w(λ, µ) and
probability of balking pK(λ, µ).

A salient feature of the model is that user behavior is explicitly taken into account. Users
originating from node i patronize the facility j that maximizes their individual utility ũij ,
estimated as the sum of travel time to the facility (tij), queueing at the facility (wj), plus
the probability of balking (pKj):

ũij = − (tij + αwj + βpKj)︸ ︷︷ ︸
uij

+εij , (1)

where εij are independent Gumbel variates with comon scale parameter θ and variance π2/(6 ·
θ2). In this multinomial logit framework (see [2]), the demand generated at node i that
patronize an open facility j is given by the expression

xij = di
e−θ (tij + αwj + βpKj)∑

l∈J∗

e−θ (til + αwl + βpKl)
, (2)

where J∗ represents the set of open facilities. For small values of θ, users are spread more
or less evenly between facilities while, when θ is large, the assignment approaches that of a
Wardrop equilibrium (see [3]). According to our assumptions, the problem can be formulated
as the equilibrium-constrained nonlinear mixed integer program involving a leader and a
follower (users):

(P) LEADER: max
y, µ, λ, λ̄,
x, w, p, ρ

∑
j∈J1

λj

∑
j∈J1

cfyj +
∑
j∈J1

cµµj ≤ B,

µj ≤Myj , ∀j ∈ J1
λj = λj(1− pKj), ∀j ∈ J
yj ∈ {0, 1}, µj ≥ 0, ∀j ∈ J1

USERS: xij = di
yj · e−θ (tij + αwj + βpKj)∑
l∈J∗ e

−θ (til + αwl + βpKl)
, ∀i ∈ I; ∀j ∈ J

λj =
∑
i∈I

xij , ∀j ∈ J

ρjµj = λj , ∀j ∈ J

pKj = ρKj
1− ρj

1− ρK + 1
j

, ∀j ∈ J

wj(λj , µj) =
1

µj

K +
K

ρKj − 1
− 1

ρj − 1

 , ∀j ∈ J.
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3 Algorithms

We have designed two algorithms for addressing the bilevel location problem.
The first approach is based on a piecewise-linear approximation of non-linear (and non-

convex) functions, in order to obtain a linear bilevel problem that can be further reduced to
a MILP, through the following five operations:

1. Approximate the lower-level objective function by a piecewise linear approximation.

2. Write the KKT optimality conditions of the lower-level linear program to obtain a
single-level mathematical program involving complementarity constraints (MPEC).

3. Formulate the MPEC as an MILP, through the introduction of binary variables and
‘big-M’ constants.

4. Solve the resulting MILP for optimum values of µ and y.

5. Solve the original nonlinear lower-level problem to recover the true values of the assign-
ment vector x associated with µ and y.

Whenever the approximation is fine-grained, we expect its solution to be close to optimal.
We prove that in the absence of balking, this algorithm is asymptotically exact. However,
when balking is present, it becomes a matheuristic, and no bound on the error is guaranteed.

The second algorithm is a parameterized heuristic based on a surrogate problem. We
replace the original model by a single-level model involving a surrogate objective, whose
optimal solution automatically satisfies the fixed point constraint. The rationale behind this
strategy is that both the leader and the users have a shared interest in minimizing delays.
We therefore expect that, if the lower level is given full control, the resulting design should
favor access to the leader’s facilities, and therefore yield a high throughput. Our experiments
show that this method yields good quality feasible solutions within a reasonable amount of
time.
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Abstract In the (r | p)-centroid problem, two players, called the Leader and the Follower,
open facilities to service customers. We assume that customers are identified with their
location on the plane, and facilities can be opened anywhere in the plane. The Leader
opens p facilities. Later on, the Follower opens r facilities. Each customer patronizes the
closest facility. The distances are calculated according to l1-metric. The goal is to find the
location of the Leader’s facilities maximizing her market share. We provide the results on the
computational complexity of this problem and develop a local search heuristic, based on the
VNS framework. Computational experiments on the randomly generated test instances show
that the proposed approach performs well.

1 Introduction

This paper addresses a Stackelberg facility location game on a two–dimensional plane. We
assume that the customers demands are concentrated at a finite number of points in the
plane. In the first stage of the game, a player, called the Leader, opens p facilities. At the
second stage, another player, called the Follower, opens r facilities. At the third stage, each
customer chooses the closest opened facility as a supplier. We consider the case when the
distances are defined according to l1-metric. In case of ties, the Leader’s facility is preferred.
Each player tries to maximize its own market share. The goal of the game is to find p points
for the Leader facilities to maximize her market share. We assume that the Leader knows
how many facilities the Follower will locate.

The (r | p)-centroid problem was first studied by Hakimi for location on a network. A
comprehensive review of complexity results and properties of the problems can be found in
[1].

In this paper we present a local search heuristic using an exact approach for the Fol-
lower problem. We consider the (r | Xp−1 + 1)-centroid problem where the Leader moves
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exactly one facility. We use this problem in order to find the best neighboring solution in the
swap neighborhood. To reduce the computational efforts we use the concept of randomized
neighborhoods and apply a local descent algorithm to evaluate the goal function during the
neighborhood exploration.

2 Mathematical model

Let us consider a two–dimensional plane in which n customers are located. We assume that
each customer j has a positive demand wj . Let X be the set of p points where the Leader
opens her own facilities and let Y be the set of r points where the Follower opens his own
facilities. The l1 distances from customer j to the closest facility of the Leader and the closest
facility of the Follower are denoted as d(j,X) and d(j, Y ), respectively. Customer j prefers
Y over X if d(j, Y ) < d(j,X) and prefers X over Y otherwise. By

U(Y ≺ X) := {j | d(j, Y ) < d(j,X)}

we denote the set of customers preferring Y over X. The total demand captured by the
Follower by locating his facilities at Y while the Leader locates her facilities at X is given by

W (Y ≺ X) :=
∑

(wj | j ∈ U(Y ≺ X)).

For given X, the Follower tries to maximize his own market share. The maximal value
W ∗(X) is defined to be

W ∗(X) := max
Y,|Y |=r

W (Y ≺ X).

This maximization problem will be called the Follower problem. The whole market is divided
between competitors, so the Leader tries to minimize the market share of the Follower. This
minimal value W ∗(X∗) is defined to be

W ∗(X∗) := min
X,|X|=p

W ∗(X).

For the best solution X∗ of the Leader, her market share is
∑n

j=1wj − W ∗(X∗). In the
(r | p)–centroid problem, the goal is to find X∗ and W ∗(X∗).

We claim that the (r | p)-centroid problem under l1 metric is Σp
2-hard, while the Follower’s

problem is NP − hard.

3 Local search algorithm

At the first step we address the Follower problem (lower level problem). In this case the
location of Leader’s facilities in known and given as an input. Together with the locations
of customers this information defines the set of attractive regions, one for each customer.
Each region represents a set of points on the plane, which are closer to the customer than the
closest facility of the Leader. If the Follower opens his facility inside of this region, he captures
the corresponding customer. Intersecting regions allows to capture more than one customer
simultaneously. The l1 metric allows us to formulate the problem of enumeration of all the
valuable intersections as a problem of finding all maximal cliques in a graph on n vertices. We
design a polynomial time procedure, based on the all maximal cliques generation approach [3],
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in order to provide a list of intersection regions. Using this list, we provide an ILP formulation
for the Follower problem. In order to tackle the upper level problem we propose a VNS-based
approach. To explore the neighborhood we consider the (r|Xp−1 + 1) − centroid problem
where the Leader has a set of p − 1 facilities and wants to open another facility in the best
position [2]. We claim that there is a relatively small number (bounded by polynomial of n)
of candidate points in the plane which should be checked in order to find the best one. The
proposed approach was implemented in C# environment and tested on benchmark instances
with up to 100 customers for values of p = r = 5, 10, 15. Computational results show the
effectiveness of the method.

Keywords: Stackelberg game, Manhattan distance, Matheuristic, Bi-level programming
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Departament of Industrial Engineering , Universidad de Chile, Chile,

fordon@dii.uchile.cl

Abstract A retail firm has several malls with a known location. A particular product, e.g.,
food processor, comes in p types, which differ by shapes, brands and features. The set of all
p products is P . Each mall j has a limited capacity cj of products in P to be sold at that
location, so the firm has to choose what products to sold at what mall. Furthermore, the firm
can apply discrete levels of discount on the products, e.g., 5% and 10% over the price πk of
product k. The objective of the firm is to find what products to sell at which mall, with what
level of discount, so that its profit is maximized. Consumers are located in points of the region.
Each consumer or group of consumers i has a different set Pi ⊆ P of acceptable products, and
will purchase one of these, or none if it is not convenient for her. Consumers maximize their
utility, defined as uijkl = rik − αjkl · πjk − 2dij where rik is the maximum expenditure that
customer i is willing to make to acquire product k; αjkl is (100 - discount level l in percent) of
the product k in mall j; πjk is the price of the product k in the mall j and dij is the distance
between consumer i’s origin and mall j. Whenever this utility is negative for product k at all
malls, the consumer does not purchase the product. The agents (firm and consumers) play a
Stackelberg game, in which the firm is the leader and the customers the follower. Once the
firm decides the products to sell at each mall and the possible discounts, consumers purchase
(or not) one of their acceptable products wherever their utility is maximized. We model the
problem using first a bilevel formulation, and we further replace the follower problem by the
primal constraints and optimality restrictions, to obtain a compact formulation. We also
present a strong and a weak formulation. Computational experience is offered, using known
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instances from the literature [1].

Keywords: Stackelberg game, multi-product location, bilevel programming
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Abstract Even though bi-level programming problems are difficult to solve [1] they have
become relevant in the industrial sector. In fact, many real-world problems in areas such as
management, economic planning or engineering involve a hierarchical relationship between
two decision levels. In this work we present an application study on the Network Pricing
Problem (NPP) [2]. The NPP reflects the decision-making process of a company that (i) has
to determine the price of its services to maximize its revenues and (ii) has to consider the
customers’ reactions to these prices as they may refuse to buy a product or service if the price
is too high. This class of problems was first studied in the 1990s and it is NP-hard, although
there are polynomial algorithms applicable to particular cases [3] [4].

In this work, we propose to use the Multi-Objective Genetic algorithm Structured Input
(MOGASI) algorithm to solve the NPP [5]. This algorithm combines modules and operators
of standard Genetic Algorithms (GAs) with specialized routines aimed at achieving enhanced
performance on specific types of problems [6]. MOGASI classifies variables and constraints to
apply specialized data handling strategies to sub-problems with different data structures. An
evolutionary bi-level nested approach is applied to the road network NPP, where typically an
authority owns a subset of toll paths and imposes tolls on them in an attempt to maximize
revenues. The users traveling on that network seek to minimize costs. This is possible owing
to the low computational effort required for finding the best solution for the users. MOGASI
is applied at the authority level and an exact solver at the user level. The user problem
is rather simple once the authority’s decision variables are fixed because it is reduced to a
minimum cost assignment problem.

We analyzed the possible differences between the solution with the proposed evolutionary
bi-level nested approach and the exact solver solution of a single-level problem reformulation
as in [7]. The main focus is on the behavior of the two approaches in relation to the increasing
problem size. For this purpose we used a set of random instances introduced in [8] to test
product pricing problems, and later used by [9] to compare the NPP formulation and the prod-
uct pricing formulation for solving product pricing problems. Two categories of instances are
generated, i.e., complete and partial networks, to test the proposed optimization framework.
Complete network means that toll free path costs are randomly generated between 20 and 30
(and so are always larger than fixed costs of toll paths, which range between 1 and 10 to be
summed up with the toll path cost), such that all commodities could use all toll paths, whilst
for a partial network the set of toll free path costs is randomly generated between 10 and
30, meaning that some toll paths will never be interesting for some commodities. For both
categories a set of five different problem dimensions is taken into consideration, i.e., instances
with 20, 56, 90, 132 and 180 commodities and toll paths. The problem is rather difficult
and the existing exact approaches are not able to solve large instances within a reasonable
amount of time, that is one hour. The idea was to identify a promising area, or at least a
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niche, in which a nested meta-heuristic such as MOGASI can compete against or even surpass
the performance of traditional exact solvers.

A specific promising area was found for the proposed nested approach with respect to
the exact solver. The results presented in this work show that MOGASI is outperformed by
the exact solver in small-size instances but the situation is the opposite as the instance size
increases. In spite of the fact that both dimensions, i.e. number of toll paths and number
of commodities, contribute to the problem complexity. The number of commodities seems
to have a larger impact on the exact solver performance. An analysis of the behavior of the
MOGASI algorithm shows difficulties to reach convergence in relation to instances with a
low number of commodities. A hypothesis is that it is more difficult for the GA to solve
problems with a low number of commodities because their distribution implies smaller shifts
in the authority objective function values, which MOGASI is tasked with solving. The general
performance trends in the 90-, 132- and 180-toll instances for partial network are very positive
for the GA for the cases with the highest number of commodities. In particular, for the
largest instance sizes the application of MOGASI yielded results of the same quality as those
obtained with the exact solver in at least one order of magnitude of time less. For example, in
180-toll/180-commodity partial instance set the MOGASI runs on average for approximately
750s against 3,600s of the exact solver. However, due to the stochastic nature of the GA,
this performance cannot always be guaranteed, even though the failure probability is low.
Considering that the average execution time of the case with the longest run is approximately
a fifth of the time required by the exact solver, we believe that repeated runs are acceptable
in the search for the optimum.

Future work will focus on the dynamics of large scale instances to delimit more precisely the
promising application area for MOGASI. We also intend to develop new specialized MOGASI
modules for integer problems since the current implementation does not have any specialized
strategy for handling them, despite the results achieved in this application.

Keywords: Pricing Problem, Bi-level optimization, Genetic Algorithms
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[4] Castelli L., Labbé M. and Violin A. , Network pricing problem with unit toll, Networks
69, pp 83-93, 2017.

[5] Costanzo S., An Evolutionary Multi-Objective Optimization Framework for Bi-level
Problems, PhD thesis, University of Trieste, Italy, 2016.

[6] Costanzo S., Castelli L. and Turco A. , MOGASI: A multi-objective genetic algorithm
for efficiently handling constraints and diversified decision variables, Engineering Opti-
mization, pp 99-104, CRC Press-Balkema, 2014.

2



[7] Violin A., Mathematical programming approaches to pricing problems, PhD thesis, Uni-
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Abstract We consider a model of competition process organized as a Stackelberg game.
Two parties open their facilities with the aim to maximize profit from serving the customers
which behave in accordance to a binary rule. The set of customers is unknown for the
party opening its facilities first but reveals itself before the second party makes own decision.
A finite set of scenarios specifying all the customer’s parameters is provided to the first
party, and one of the scenarios would be realized in the future. The scenarios have a known
probability of realization, and the first party, beside maximizing the profit, aims to increase
the probability to get a certain profit value. We formulate a problem of the first party as
a bi-objective bi-level mathematical program incorporating the second party’s problem at
the lower-level. To approximate the set of effective solutions, we develop an ε-constraint
method solving a sequence of bi-level problems with a single objective. A subset of weakly
efficient solutions obtained by the method allows to analyze trade-offs caused by uncertainties
in demand specification.

Keywords: Bi-level programming, Competitive location, Multicriteria optimization, Stack-
elberg game

1 Introduction

Making decisions on location of commercial facilities should involve anticipation of the com-
petitors’ reaction which is rational and prescribed by solution of some optimization problem.
A competitive nature of the process can not be ignored due to the fact that an income ob-
taining by the facilities to be open depends on further actions of the competitors. We assume
that there is a single competitor on the market or all the competitors can be aggregated into
a single one. In this situation, the party locating facilities can consider itself as the Leader
in a Stackelberg game. The second player of this game, called the Follower, represents the
competitor who makes the decision knowing the Leader’s one.

Competitive models incorporate so-called customer behavior rules determining how the
customers split their demand among the facilities opened by the competitors. In the present
work, a binary customer rule is utilized. It assumes that each of the customers patronizes
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a single facility. Choice of that facility is based on customer’s preferences represented with
linear order on the set of potential facility locations. In the model under consideration, a
customer can be served by any facility which is more preferable than all the competitor’s
ones.

A demand for products or services provided by the competing parties is affected by many
factors and is hardly predictable. Beside the uncertainty inherent to predicted data, the
demand is sensitive to external factors influencing on its structure. We consider a situation
when the Leader is provided with a finite number of possible scenarios. Each of the scenarios
fully characterizes the set of customers with their attributes and has a known probability of
realization. Only one of the scenarios will be realized in the future, and it is impossible to
know in advance which one it would be. In the Stackelberg game framework, the Follower
makes a decision after the Leader. It provides the Follower a knowledge about the decision
regarding facilities opened by the Leader. Moreover, additional evidences about the demand
scenario realized reveal themselves, so the Follower is able to distinguish the scenario before
making own decision. Thus, unlike the Leader, the Follower is in a situation of full information
and acts optimally regardless of which scenario is realized.

As like as in the maximization facility location problem, it is assumed that the parties
maximize their profit calculated as an income from serving the customers after deduction of
fixed costs of open facilities. The Leader itself is interested in finding not only the safest
and conservative solution but more risky and profitable ones as well. To deal with it, a
second objective function representing a probability to obtain a certain profit is introduced
into the Leader’s problem. It results in a bi-objective competitive facility location problem
(BCompFLP) with the upper-level problem to maximize both the Leader’s profit and the
probability to get it, and a lower-level problem to maximize the Follower’s profit in each of
the scenarios.

2 Formalization

For brevity, let us provide a combinatorial formulation of BCompFLP instead of the one
represented in terms of mathematical programming. Consider a finite set I = {1, . . . ,m} of
possible locations where facilities of both the parties can be opened. It is assumed that the
Leader considers a list of possible scenarios indexed by the elements of the set S = {1, . . . , l}.
A finite set Js represents the set of customers available in the case when the scenario s ∈ S
is realized.

The list of input parameters for BCompFLP consists of fixed costs fi of opening the
Leader’s facility i ∈ I and an income cij from serving the customer j ∈ Js, s ∈ S by the
facility i. The analogical Follower’s parameters would be denoted by gi and dij , i ∈ I, j ∈ Js,
s ∈ S, respectively. The probability of the scenario s ∈ S realization is denoted by ps.

We assume that each customer is served by a single facility chosen with respect to prefer-
ences of the customer represented with linear order on the set I. Given i1, i2 ∈ I, i1 6= i2, the
relation i1 �j i2 means that i1 is more preferable for j than i2. For a non-empty subset I ′ ⊆ I
and some i ∈ I\I ′, we use a notation i �j I

′ to say that i �j k for all k ∈ I ′. Additionally,
we assume that i �j ∅ for all i ∈ I, j ∈ J .

Consider a non-empty subset IL ⊆ I of facilities opened by the Leader and a scenario
s ∈ S. We assume that the Follower cannot open own facilities in the locations occupied by
the Leader. For a subset IF ⊆ I\IL of facilities opened by the Follower, its profit F s(IF ) is
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calculated in the following way:

F s(IF ) = −
∑
i∈IF

gi +
∑
j∈Js

max
i∈IF |i�jIL

dij , (1)

where a maximum over the empty set is assumed to be equal to zero. Let Cs(IF ) denotes
the value of income obtaining by the Leader in a case when the scenario s is realized, and
the set of Follower’s facilities equals to IF : Cs(IF ) =

∑
j∈Js maxi∈IL|i�jIF cij . The Follower

is rational and chooses a subset ĨsF maximizing the profit value F s(ĨsF ). In the pessimistic
case, the subset ĨsF is the least desired optimal solution of the Follower, i. e. such that the
Leader’s income function Cs(·) is minimized. Let C̃s denotes the value Cs(Ĩ

s
F ).

Since the scenario is chosen randomly after the Leader’s decision, its profit can be ex-
pressed in a form L(IL) = −

∑
i∈IL fi + ξ, where ξ is a random variable taking the value C̃s

with a probability ps. The Leader is interested in finding a subset of facilities maximizing a
profit obtained. The second Leader’s objective is maximizing the probability of obtaining a
certain profit. Thus, the BCompFLP can be written as

max
IL⊆I,C≥0

−∑
i∈IL

fi + C

 , (2)

max
p0≥0

p0, (3)

provided that p(ξ ≥ C) ≥ p0, where p(·) is a probability measure. Continuous variables C
and p0 stand for the income value and the probability to obtain an income not less than C.

3 Main results

On the basis of the upper bound procedures proposed in [1], we develop a branch-and-bound

algorithm obtaining an optimal solution of the Leader’s problem with the second objective

function (3) restricted to take values not less than a certain threshold [2]. By solving a series

of subproblems with different threshold values, we get a set of weakly-efficient solutions of

the Leader’s problem. Depending on the application, the solutions obtained can be used to

study “risks vs. profit” trade-offs, stability of Leader’s solution with respect to perturbations

of the input data and some other factors which are of practical importance. In numerical

experiments, we show the spectrum of effects exploring by the model. Instances with twenty

candidate locations can be processed by the method in a reasonable time.
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Abstract Multiple-objective optimization (also referred to as vector or multi-criteria opti-
mization) deals with the situations where one wishes to minimize several conflicting objectives.
Formally, multiple-objective optimization can be formulated as follows

minx

(
f1(x), . . . , fp(x)

)
such that x ∈ X,

(V)

where p ≥ 2, x = (x1, . . . , xn) is the vector of decision variables, X ⊆ Rn represent the feasible
set and fk : Rn → R (k = 1, . . . , p) are the objective functions.

Unlike the case with a single objective, the optimal solution for multiple-objective opti-
mization is in general not a single point but a set of solutions where each solution represents
a compromise between the different objectives. To solve this type of problems, one has to find
all efficient solutions or weakly efficient solutions in the sense of the following definitions [2].
A feasible point x̂ ∈ X is an efficient (Pareto optimal, nondominated) solution for problem
(V) if and only if there does not exist x ∈ X such that f(x) ≤ f(x̂) and f(x) 6= f(x̂). It is
a weakly efficient (weakly Pareto optimal, weakly nondominated) solution for problem (V) if
and only if there does not exists x ∈ X such that f(x) < f(x̂). Let us denote XE and XWE

the set of all efficient solutions and the set of all weakly efficient solutions for problem (V),
respectively, so that XE ⊆ XWE .

In many situations, the decision-making process does not requires explicit enumeration
of all efficient solutions, but only efficient solutions achieving the optimum of some scalar
function expressing the decision maker’s preferences within the set of Pareto optimal solutions.
This is the problem of optimizing over the efficient set, introduced in [1]. This problem is
given by

minx φ(x)
such that x ∈ XE ⊆ X,

(PE)

where φ : Rn → R is a real-valued function. The problem (PE) is among the difficult
problems in global optimization because the efficient set XE is not convex in general, even
in the linear case where the objective functions fk’s are linear and the feasible set X is a
polyhedron.
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Most of the proposed methods to tackle this problem focus on the linear case. Several
methods were developed following the work of [1]; see for example the survey [3] and the
references therein. However, the literature dealing with this problem is relatively poor for
nonlinear multiple objective problems due to its difficulty. Most of the algorithms proposed
in the literature seek to globally solve this problem through global optimization techniques.
It is worth noting that such techniques are only able to solve moderate sized problems. In
this paper, we propose a numerical method to tackle this problem when φ(x) is a convex
function, the objective functions fk, k = 1, . . . , p, are quadratic convex and the feasible set
X is nonempty, compact and convex. This algorithm is based on a penalty approach, using a
sequence of convex nonlinear subproblems that can be solved efficiently. Our idea to tackle this
problem is as follows. The problem (PE) is reformulated as a nonlinear bilevel programming
problem (NBLP) based on the characterization of the efficient solutions by means of scalar
optimization problem derived from the multiple-objective problem, and then to construct a
penalty function that is a combination of the objective functions of the upper and the lower
levels of the equivalent bilevel reformulation (NBLP). The resulting penalty problem is then
solved by optimizing alternatively over the lower level variables and the upper level variables.

The proposed algorithm is shown to perform well on a set of standard problems from the
literature, as it allows to obtain optimal solutions in all cases. In addition, it can be adapted
easily to obtain a weakly efficient solution.

Keywords: multiple objective nonlinear optimization, (weakly) efficient set, penalty ap-
proach
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Abstract The semivectorial bilevel programming problem (SVBLP) refers to bilevel prob-
lems comprising a single objective at the upper-level and multiple objectives at the lower-level.
In SVBLP, the lower-level problem has a number of tradeoff solutions (efficient solutions) for
each upper-level solution. Thus, in addition to the theoretical and computational difficulties
in computing solutions to these problems, further issues arise in the decision process resulting
from the fact that the leader (upper-level decision maker) does not know a-priori which effi-
cient solution the follower (lower-level decision maker) will choose according to his (unknown)
preferences. Therefore, the complexities of these problems are beyond those already inherent
to conventional multiobjective programming and bilevel programming.

Consider the following formulation for the SVBLP:

min
x

F (x, y) (1)

s.t. G(x) ≤ 0

y ∈ argmin
y

{f1(x, y), · · · , fm(x, y) : g(x, y) ≤ 0}

where x ∈ R
n1 and y ∈ R

n2 denote the upper-level and the lower-level variables, respectively,
and m is the number of objective functions at the lower-level. We assume that the set
X = {x ∈ R

n1 : G(x) ≤ 0} is nonempty and compact and, for each x ∈ X, the set Y (x) =
{y ∈ R

n2 : g(x, y) ≤ 0} is also nonempty and compact. For each x ∈ X there is a set Ψef (x)
of efficient (Pareto optimal or nondominated) solutions to the lower-level problem. Ψef (x) =
{y ∈ Y : there is no y′ ∈ Y (x)|f(x, y′) ≺ f(x, y)} where ≺ denotes the dominance relation,
i.e., f(x, y′) ≺ f(x, y) iff fj(x, y

′) ≤ fj(x, y) for all j = 1, · · · ,m, and fj(x, y
′) < fj(x, y) for

at least one j. Generally Ψef (x) is not singleton and, thus, the optimal solution to problem (1)
may be ambiguous. The two main ways to deal with the problem suggested in the literature
are the optimistic and the pessimistic approaches, which lead to two reformulations of (1).

In the optimistic approach the leader assumes that the follower is willing to support
him and selects the solution among Ψef (x) that is the best for the leader. Thus, an opti-
mistic solution (xo, yo) is a solution that optimizes the optimistic formulation: min

x,y
F (x, y)

s.t. G(x) ≤ 0, y ∈ Ψef (x).
In the pessimistic approach the leader prepares for the worst case. The leader chooses the

x that leads to a solution with minimum F in view of the follower’s decisions y worst for the
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leader. The pessimistic solution (xp, yp), if it exists, is an optimal solution to the pessimistic
formulation: min

x
max
y

F (x, y) s.t. G(x) ≤ 0, y ∈ Ψef (x).

Most theoretical and algorithmic contributions made thus far to solve SVBLP have gen-
erally adopted an optimistic formulation. Several solution approaches (exact and heuristic)
have been proposed to compute or approximate the optimistic solution, especially for prob-
lems with multiobjective linear problems at the lower-level, while few works have addressed
the pessimistic formulation.

However, accepting an optimistic approach means assuming that the follower is indifferent
to any of his efficient solutions, i.e. he is indifferent between optimizing any one of his
objective functions or even any combination of them. Therefore, the larger the number of
lower level objective functions is, more freedom is given by the optimistic approach to the
leader for choosing the solution more convenient to him. In practice this assumption is
seldom realistic. Thus, it is important to acknowledge the risk the leader takes if he adopts
an optimistic procedure to a real SVBLP. On the other hand, the pessimistic solution may be
very conservative by just focusing on the worst choice of the follower in view of the leader’s
interests.

In addition to the optimistic and pessimistic solutions, there are other types of solutions
that can also provide useful information to the leader about the risk he is running into when
making a specific decision. In particular, the following solutions may be relevant for decision
support purposes: the result of a failed optimistic approach – deceiving solution – and, on the
other hand, the solution resulting from a successful pessimistic approach – rewarding solution.

The deceiving solution is the outcome when the leader chooses x according to the opti-
mistic approach (believing that the follower will pursue his interests) but the follower does
not react accordingly and takes the decision with the worst value for the leader’s objec-
tive function. Thus, given the optimistic upper level decision xo, the deceiving solution is
(xd, yd) = (xo, yd) where yd is given by max

y
F (xo, y) s.t. y ∈ Ψef (x

o). On the other hand, if a

pessimistic approach is pursued by the leader but the follower’s reaction is the most favorable
to the leader, a rewarding solution is obtained. Thus, given the pessimistic upper level deci-
sion xp, the rewarding solution is (xr, yr) = (xp, yr) such that yr is given by min

y
F (xp, y) s.t.

y ∈ Ψef (x
p). These four extreme solutions – optimistic, pessimistic, deceiving and rewarding

– give important insights to the leader of possible outcomes and ranges of values resulting
from a risky or a conservative approach.

Let us call optimistic efficient frontier (O) the set comprising the solutions (x, y′) such

that x ∈ X and y′ ∈ O(x) =

{

argmin
y

{F (x, y) : y ∈ Ψef (x)}

}

, and pessimistic efficient

frontier (P ) the set comprising the solutions (x, y′′) such that x ∈ X and y′′ ∈ P (x) =
{

argmax
y

{F (x, y) : y ∈ Ψef (x)}

}

. Fig.1(a) illustrates the F values in the optimistic and

pessimistic efficient frontiers of a SVBLP linear problem with one upper level variable (x).
In this example there is a significant difference between the optimistic and the deceiving
solutions for the leader’s objective function F . Therefore, if the leader adopts for an optimistic
approach he takes a high risk, since the deceiving solution is very bad. Conversely, there is a
small difference between the pessimistic F and the rewarding one, being the F value in the
rewarding solution close to the optimistic F .

In addition to these four extreme solutions, we introduce another solution concept, the
moderate solution, which provides the leader the highest expected value considering an index
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Figure 1: Example of F values in O and P frontiers, and for different optimism p1 values

of optimism vs. pessimism. Consider p1 ∈ [0, 1] an optimism index defined by the leader
(which may represent the probability perceived by leader for the follower choosing, for each
x, the solution y ∈ Ψef (x) that is the best for the leader) and p2 ∈ [0, 1], p2 = 1 − p1 the
pessimism index (probability for the follower choosing, for each x, the solution y ∈ Ψef (x)
that is the worst for the leader). The solution that optimizes the expected value for the
leader’s objective function is given by:

min
x

F (x, y)

s.t. G(x) ≤ 0 (2)

F (x, y) ≥ p1F (x, y′) + p2F (x, y′′)

y′ ∈ O(x), y′′ ∈ P (x)

Fig. 1(b) shows, for the example presented in Fig. 1(a), the lines of F values for different
values of p1. In this example, for values of the optimism index p1 from 1 to 0.8, the best
leader’s decision x according to (2) is the optimistic one, xo; for p1 = 0.8, the F expected
value is equal for the leader’s decisions xo and xp; for p1 < 0.8, the best leader’s decision x

according to (2) is the pessimistic one, xp. This information complements the analysis above
of the four extreme solutions concerning the assessment of the leader’s risk in each decision.

To summarize, the existence of multiple objective functions at the lower-level of a bilevel
problem poses additional difficulties for the leader to anticipate the follower’s reaction to the
underlying tradeoffs between his multiple objectives. Therefore, different types of solutions
can provide broader information to the leader. The optimistic, pessimistic, deceiving and
rewarding solutions characterize distinct attitudes of the leader and the follower, delimiting
the ranges of possible optimal values for the leader taking into account the follower’s extreme
decisions. In order to provide further decision support to the leader in SVBLP, other solutions
may be computed (moderate solutions) that optimize the expected value for the leader’s
objective function considering different probabilities of the follower’s decision being in favor
or against the interests of the leader.

In this presentation we will introduce these different types of solutions to SVBLP, illus-
trating their usefulness using several examples, with linear and non-linear functions.

Keywords: semivectorial bilevel programming, multiobjective optimization, pessimistic
vs. optimistic approaches, risk
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Abstract
We provide an overview of the known classes of inequalities valid for the feasible region of a

mixed integer bilevel linear optimization problem (MIBLP). The overview includes a summary
of both the theoretical basis for the inequalities and an analysis of their performance within
the MibS open source solver [1]. We further describe an algorithm for generating inequalities
that support the convex hull of the feasible region and use this procedure as a baseline for
comparing the strength of various other classes.

We let x ∈ X and y ∈ Y represent the set of variables controlled by the first- and second-
level decision makers (DMs) respectively, where X = Zr1

+ × Rn1−r1
+ and Y = Zr2

+ × Rn2−r2
+ .

The general form of an MIBLP is then given by

min
{
cx+ d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ φ(b2 −A2x)
}
, (MIBLP)

where
P1(x) =

{
y ∈ Rn2

+

∣∣ G1y ≥ b1 −A1x
}

and

P2(x) =
{
y ∈ Rn2

+

∣∣ G2y ≥ b2 −A2x
}

denote the set of the points satisfying the linear constraints of the first- and second-level
problems for a given x ∈ Rn1 , respectively and

φ(β) = min
{
d2y

∣∣ G2y ≥ β, y ∈ Y
}
∀β ∈ Rm2 . (VF)

With respect to a given x ∈ X, the rational reaction set is defined as

R(x) = argmin
{
d2y

∣∣ y ∈ P2(x) ∩ Y
}

and contains y ∈ Y such that y is an optimal solution to the second-level problem parame-
terized on x. The bilevel feasible region is defined as

F = {(x, y) ∈ X × Y | y ∈ P1(x) ∩R(x)} .

Dropping the optimality constraint with respect to the second-level problem, we obtain the
relaxed feasible region

S = {(x, y) ∈ X × Y | y ∈ P1(x) ∩ P2(x)} .
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Further dropping the integrality constraints, we get

P =
{

(x, y) ∈ Rn1×n2
+

∣∣ y ∈ P1(x) ∩ P2(x)
}
.

We have F ⊆ S ⊆ P.
We assume that all first-level variables with at least one non-zero coefficient in the second-

level problem (so-called linking variables) are integer-valued, i.e.,

L =
{
i ∈ {1, . . . , n1}

∣∣ A2
i 6= 0

}
⊆ {1, ..., r1} ,

where A2
i represents the ith column of matrix A2. This assumption guarantees that the

optimal value of (MIBLP) is attainable (when the feasible region is nonempty). It is easily
shown that after fixing the values of linking variables, the MIBLP is equivalent to a mixed
integer linear optimization problem (MILP).

Proposition 1 Let F̄ ⊆ {(x, y) ∈ F | xL = γ} for some γ ∈ ZL, then

min
(x,y)∈F̄

cx+ d1y = min
{
cx+ d1y

∣∣ (x, y) ∈ S, d2y ≤ φ(b2 −A2x), xL = γ
}
. (UB)

As usual, a valid inequality for a given optimization problem is one that is satisfied by all
feasible solutions to the problem (F in this case). In the notation of (MIBLP), we have the
following.

Definition 1 (Valid Inequality) (αx, αy, β) ∈ Rn1+n2+1 is a valid inequality for F if

F ⊆
{

(x, y) ∈ Rn1+n2
∣∣ αxx+ αyy ≥ β

}
.

Generally speaking, the goal of imposing valid inequalities during a branch-and-cut algorithm
is to remove areas of the relaxed feasible region which do not belong to F . However, there
are times when we allow the removal of solutions that are feasible, but that we can show are
non-improving.

Definition 2 (Valid Improving Inequality) (αx, αy, β) ∈ Rn1+n2+1 is a valid improving
inequality for F if

conv
({

(x, y) ∈ F
∣∣ c1x+ d1y < U

})
⊆

{
(x, y) ∈ Rn1+n2

∣∣ αxx+ αyy ≥ β
}

where U represents the best known upper-bound for (MIBLP).

In the remainder of abstract, when we say “valid inequality,” we are referring to “valid
improving inequality”.

In the context of MIBLPs, the main aim of generating a valid inequality is to remove
either

1. An extreme point (x̄, ȳ) of P (or the feasible region of the current relaxation), where
(x̄, ȳ) /∈ X × Y .

2. An extreme point (x̄, ȳ) of P (or the feasible region of the current relaxation) such that
(x̄, ȳ) ∈ X × Y , but ȳ /∈ R(x̄).

3. All (x, y) ∈ P such that x ∈ projx(F) and xL = λ ∈ ZL.
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The Cases 1 and 2 above occur when the extreme point (x̄, ȳ) resulting from solving the
relaxation is not bilevel feasible. Note that, unlike in the case of the feasible region of an
MILP, the feasible region of the relaxation has integral extreme points that are nevertheless
infeasible (Case 2). Case 3 arises anytime we solve the problem (UB), since all (x, y) ∈ F
with xL = λ ∈ ZL can be removed, as they are non-improving by construction.

We consider inequalities of three classes, based on what types of solutions they remove.

1. Feasibility cuts: Inequalities that are violated by a fractional extreme point of P (as in
Case 1), but are valid for S.

2. Optimality cuts: Inequalities that are violated by an integral extreme point of P (as in
Case 2 above), but are valid for F .

3. Projected optimality cuts: Inequalities violated by non-improving bilevel feasible solu-
tions (as in Case 3), but valid for conv

({
(x, y) ∈ F

∣∣ cx+ d1y < U
})

.

We describe inequalities in each of these classes and compare their performance based on
their impact on the branch-and-cut algorithm described in [1], as well as on comparison to
the aforementioned method for generating strong supporting inequalities.

Keywords: valid inequality, valid improving inequality, mixed integer bilevel linear opti-
mization
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Abstract Bilevel, or multilevel problems in general, become increasingly popular in ap-
plied mathematical optimization. In economics, for instance, the modeling of energy markets
leads quite naturally to multilevel models due to the presence of several market participants
with hierarchic decisions and opposing objectives. Other real-life applications arise, e.g., in
the fields of gas network optimization, critical infrastructure defense, and machine learning.
Even in their simplest form, i.e., when the upper and lower level both are continuous and
linear, bilevel problems are NP-hard. The more general case of mixed-integer linear bilevel
problems (MILBP) is Σ2

p-hard. However, a couple of promising approaches for MILBPs with
various properties have been published in recent years.

A well-known technique for linear bilevel problems with a convex lower level is the refor-
mulation of the lower level by its KKT conditions. The resulting single-level problem can
then be solved, e.g., by branching on the KKT complementarity conditions, or by a big-M
reformulation of the KKT complementarity conditions. Another option is to use strong dual-
ity of convex optimization. The idea is to extend the convex lower-level problem by its dual
problem and a linear equality constraint that enforces strong duality; see, e.g., [1]. In gen-
eral, both approaches contain products of primal first-level and dual second-level variables.
This may not be a problem for integer linking variables. However, in case of continuous link-
ing variables, there may arise problems of linearizing these products. Furthermore, there is
hardly any work applying these techniques to problems with a nonlinear lower-level objective
function.

Very recently, several authors proposed general-purpose branch-and-cut techniques for
linear bilevel problems with mixed-integer aspects on both levels. The techniques evolved
from problems, where the upper level does not contain any lower-level variables and problems
with integer linking variables only, to the general case with variables of both levels in the first
and second level and without restrictions to linking variables; see, e.g., [2]. However, all of
these approaches “only” deal with linear objective functions.

When analyzing problems from the field of energy market design, one is often faced with
bilevel problems with a convex lower level and integer linking variables but with quadratic
objectives on both levels. In this case, except of the KKT reformulation, none of the stated
approaches can be used in a straightforward manner. In fact, to the best of our knowledge, no
general-purpose solution techniques for mixed-integer quadratic bilevel problems exist. In [3],
two problem-specific solution techniques for a mixed-integer quadratic trilevel problem with
convex lower levels are presented. The first one uses the special structure of the model in
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order to reduce the problem to a bilevel problem and then applies a standard KKT reformula-
tion with big-M linearizations of the KKT complementarity conditions. This approach ends
up with a single-level mixed-integer quadratic program (MIQP) but has shown to be very
challenging from a numerical point of view. It is significantly outperformed by the second
proposed technique, a generalized Benders decomposition. The latter approach, however,
is only applicable, when lower-level variables are not present in the respective upper level
constraints.

In order to tackle this drawback, we propose a novel solution approach for quadratic bilevel
problems with integer linking variables and convex lower-level problems. In particular, we
deal with mixed-integer quadratic upper level problems of the form

min
x1,y1

f1(x1, y1, y2) =
1

2
(x>1 , y

>
1 )P1

(
x1
y1

)
+ c>1

(
x1
y1

)
+

1

2
y>2 Q1y2 + d>1 y2 (1a)

s.t. A1x1 +B1y1 + C1y2 ≤ b1 , (1b)

x1 ∈ Zn1 , y1 ∈ Rm1 , (1c)

where P1 and Q1 are positive definite matrices, and convex-quadratic lower-level problems of
the form

min
y2

f2(x1, y1, y2) =
1

2
(x>1 , y

>
1 )P2

(
x1
y1

)
+ c>2

(
x1
y1

)
+

1

2
y>2 Q2y2 + d>2 y2 (2a)

s.t. A2x1 + C2y2 ≤ b2 , (2b)

y2 ∈ Rm2 , (2c)

with positive definite matrices P2 and Q2.
Our approach builds on strong duality of convex optimization. In contrast to linear

problems, this involves handling quadratic constraints in case of quadratic problems. For the
lower-level problem (2), its dual problem is given by

max g(λ) = −1

2
λc2Q

−1
2 c>2 λ+ (A2x1 − b2)>λ−

1

2
d>2 Q

−1
2 d2 +

1

2
y>1 P2y1 + c>2 y1 (3a)

s.t. λ ≥ 0 , (3b)

which is a concave problem. We can now replace the lower level (2) by

primal feasibility: (2b), (2c), (4a)

dual feasibility: (3b), (4b)

strong duality: F (x1, y1, y2, λ) = f2(x1, y1, y2)− g(λ) ≤ 0 . (4c)

We note that (4c) is a quadratic but convex constraint. Hence, its first-order Taylor approx-
imation at a point (x̃1, ỹ1, ỹ2, λ̃) provides an underestimator, i.e.,

F (x̃1, ỹ1, ỹ2, λ̃)−∇y2,λF (x̃1, ỹ1, ỹ2, λ̃)

(
y2 − ỹ2
λ− λ̃2

)
≤ F (x1, x2, y2, λ) . (5)

This can be exploited by an outer approximation scheme that relaxes the optimality of the
lower level in the first place. Optimality is then iteratively restored by adding outer approxi-
mation cuts of the form

F (x̃1, ỹ1, ỹ2, λ̃)−∇y2,λF (x̃1, ỹ1, ỹ2, λ̃)

(
y2 − ỹ2
λ− λ̃2

)
≤ 0 , (6)
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where (x̃1, ỹ1, ỹ2, λ̃) denotes the solution of the previous iteration. Following this approach,
every iteration requires to solve an MIQP of the form

min f1(x1, y1, y2) (7a)

s.t. (1b), (1c), (2b), (2c), (3b), (7b)

cuts of the form (6) . (7c)

Hence, our approach reduces the bilevel problem to a series of single-level MIQPs that can
be solved using powerful and sophisticated MIQP-techniques. We provide a termination
criterion and prove that this solution technique is correct under mild assumptions. In a
first preliminary numerical test on a small test bed, the stated approach showed promising
results. In particular, it indicates better runtimes compared to the well-known standard KKT
reformulation. However, for a definitive judgment, a detailed computational study has to be
conducted.

Keywords: Quadratic Bilevel Programming, Mixed-Integer Optimization, Outer Approx-
imation
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Abstract We study special bilevel programming problems, modelling different economic
issues. We develop an approach based on tropical geometry. We identify a class of bilevel
problems which can be solved in polynomial time thanks to properties of discrete convexity.
This applies in particular to a congestion problem in mobile data networks, proposed by
Orange. Finally, we show that this class of bilevel problems can be obtained as a limit of
competitive equilibria for indivisible goods.

Keywords: Bilevel programming, tropical geometry, discrete convexity, competitive equi-
libria

1 A class of bilevel problems

We consider the following optimistic bilevel problem :

min
y∈Rn

f(CTx∗, y) s.t. x∗ ∈ arg max
x∈P
〈ρ+ Cy, x〉 (1)

where P denotes a polytope of Rk, ρ ∈ Rk and C ∈Mk,n(R), and a combinatorial version:

min
y∈Rn

f(CTx∗, y) s.t. x∗ ∈ arg max
x∈I(P)

〈ρ+ Cy, x〉 (2)

where I(P) denotes the integer points of P (I(P) = P ∩ Zk).
We propose here an approach based on tropical geometry. We consider the max-plus

semifield R ∪ {−∞} with laws ⊕ et � defined by a⊕ b = max(a, b) and a� b = a+ b.
By analogy with classical polynomials, we define a tropical polynomial by P (x) =

⊕
i ci�

x�ai = maxi [ci + 〈x, ai〉] (here, x�ai denotes x
�ai(1)
1 �· · ·�x�ai(n)

n ). The tropical polynomials
correspond to the sets of convex functions, piecewise linear with integer slopes. Each part
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ci + 〈x, ai〉 is a tropical monomial. We denote by tropical hypersurface associated with the
tropical polynomial P the set of points where P is not differentiable, that is the points where
the maximum is ”attained” at least twice.

In the Problem 1, the low-level corresponds to the evaluation of a tropical polynomial in
y:

max
x∈P
〈ρ+Cy, x〉 = max

x∈P

[
〈y, CTx〉+ 〈ρ, x〉

]
= max

z∈CTP
[〈y, z〉+ ϕ(z)] =

⊕
z∈CTP

ϕ(z)� y�z = P (y)

where the function ϕ is defined on Rn by ϕ(z) = maxx∈P, z=CT x〈ρ, x〉 (the function ϕ is only

finite on the polyhedron CTP). We show that the tropical polynomial P induces a subdvision
S of Rn, in which each cell C ⊂ S corresponds to the set of vectors y for which the same
group of monomials realizes the maximum is P . For each cell C, we denote by ∆(C) the sets
of degrees z∗ of the maximal monomial. Consider for example P (y) = max(y1, y2, 0) with
y ∈ R2. The first monomial is maximal on the domain C1 = {y ∈ R2 | y1 ≥ y2, y1 ≥ 0}.
The degree of this maximal monomial is (1, 0). Hence, we have ∆(C1) = {(1, 0)}. The second
monomial is maximal on C2 = {y ∈ R2 | y2 ≥ y1, y2 ≥ 0} (∆(C2) = {(0, 1)}). The intersection
C1 ∩ C2 defines another cell in which all linear combination of (1, 0) and (0, 1) is the degree of
a maximal monomial (∆(C1 ∩ C2) = Conv ((1, 0); (0, 1))).

The bilevel problem 1 can be rewritten as:

min
y∈Rn

f(z∗, y) s.c. z∗ ∈ arg max
z∈CTP

[〈y, z〉+ ϕ(z)]

By subdivising Rn by S, we obtain a new approach by enumerating the cells for solving the
bilevel problem 1:

Theorem 1. The bilevel problem 1 is equivalent to minC∈S miny∈C, z∗∈∆(C) f(z∗, y)

We study a particular case in which the function f does not depend on the price vector y.
According to theorem 1, the bilevel problem consists in minimizing f over the sets of degrees
of the monomials which can be maximal in P . We show that this set is exactly CTP for
Problem 1 and CTP ∩ Zn for Problem 2 when, by defining P as P = {x ∈ Rk | Ax ≤ b}, the
matrix

[
C AT

]
is totally unimodular. It leads to the following decomposition theorem.

Theorem 2 (Decomposition). A solution y∗ ∈ Rn of Problem 1 (respectively of Problem 2)
can be obtained by:

• calculating z∗ ∈ arg minz∈CTP f(z) (resp. z∗ ∈ arg minz∈CTP∩Zn f(z)),

• finding y∗ ∈ Rn and x∗ ∈ P (resp. x∗ ∈ I(P)) such that z∗ = CTx∗ and 〈ρ+Cy∗, x∗〉 =
maxx∈P〈ρ+ Cy∗, x〉 (resp. 〈ρ+ Cy∗, x∗〉 = maxx∈I(P)〈ρ+ Cy∗, x〉).

2 Application to a congestion problem in mobile data net-
works

We consider a particular case in which k = qn (with q ∈ N), P = P1 × · · · × Pq (we suppose
that for all j, Pj ⊂ Rn) and CT = [Iq . . . Iq]. In this paricular case, the low-level problem can
be separated in q different optimization problems, and we show that the Problem 2 becomes:

min
y∈Rn

f(N) s.t. N =

q∑
j=1

x∗j ; ∀1 ≤ j ≤ q, x∗j ∈ arg max
xj∈I(Pj)

〈ρj + y, xj〉 (3)
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It corresponds to a purified version of a congestion problem in mobile data networks ([1]).
A telecommunication operator proposed discounts y ∈ Rn at different times and in different
cells. Each customer j determines his optimal consumption x∗j by maximizing his utility.
The operator observes the traffic N =

∑
j x
∗
j and propose discounts in order to balance

the network, that is to minimize a congestion measure. The decomposition theorem gives a
method to solve the problem, from which we can deduce exact algorithms. We show that it
leads to polynomial time algorithms when the different polytopes Pj correspond to generalized
polymatroids, and the function f is M \-convex in sense of Murota ([2]).

3 Comparison with a competitive equilibrium problem

We compare this congestion problem with a competitive equilibrium problem for indivisible
goods, introduced by Danilov, Koshevoy and Murota ([3]). A set of producers want to sell
n different goods to q different customers. Each customer j = 1, . . . , q wishes to buy a pack
of different goods, each pack corresponding to an integer point of a generalized polymatroid.
When the price vectors of the different products is p (pi is the price of the good i), the
customer j chooses the pack x∗j which maximizes his utility. He solves maxxj∈I(Pj) 〈ρj−p, xj〉.
The producers desire to sell all their goods. They determine their optimal consumption
N∗ ∈

∑
j I(Pj) by maximizing their own profit. They solve maxN∈

∑
j I(Pj) f(N) + 〈p,N〉

where f is supposed to be M \-concave. Danilov et al. ([3]) show that there always exists a
price vector p ∈ Rn such that N∗ =

∑
k x
∗
k. Moreover, N∗ is obtained as a solution of the

optimization problem maxN∈
∑

k I(Pj) f(N)+ψ(N) where ψ denotes the supremal convolution

of the functions xj 7→ 〈ρj , xj〉. It corresponds to the maximization of the sum of three M \-
concave functions. Under certain conditions (f separable concave for example), it can be
reduced to the maximization of the sum of two M \-concave functions, which can be solved in
polynomial time.

We modify this competitive equilibrium problem by introducing a parameter λ ≥ 0,
such that the optimization problem of the producers becomes maxN∈

∑
k I(Pk) f(N)+λ〈p,N〉.

According to the decomposition theorem, we show that the case λ = 0 is equivalent to the
congestion problem (3) (avec p = −y). Morevoer, the problem (3) corresponds to a ”limit”
case of the competitive equilibrium problem when λ goes to 0. We prove that there exists a
critical value λC such that for all 0 < λ < λC , the competitive equilibria correspond to an
optimal N of the Problem (3). Thanks to this approach, it is possible to find competitive
equilibria in polynomial time for λ small enough by solving Problem 3, the conditions for
solving Problem 3 in polynomial time being more general than those for finding a competitive
equilibrium in polynomial time.
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Abstract
We propose two related algorithms that take a generalized Benders’ approach to solving

general mixed integer bilevel linear optimization problems in which continuous and integer
variables are present in both first- and second-level problems. The first of these algorithms is
a pure Benders’ algorithm, while the second integrates this approach into branch-and-bound
to yield a so-called branch-and-Benders-cut algorithm.

Our pure Benders’ algorithm generalizes the previously proposed algorithm for stochastic
optimization problems with mixed integer recourse [1]. As with that algorithm, we make
minimal assumptions, requiring only that first-level variables participating in the second-level
problem be integer variables. As usual, the strategy is to project out the second-level variables
in order to obtain a reformulation involving only first-level variables. This reformulation
involves the so-called risk function (defined below), which is then iteratively approximated.
The result is that the master problem is a single-level optimization problem involving only
first-level variables, whereas the subproblem is the optimization problem resulting from fixing
the first-level variables. We solve this latter problem by reformulating it as a mixed integer
linear optimization problem.

More formally, we consider the following bilevel optimization problem.

min
{
c1x+ Ξ(x) | x ∈ X

}
, (MIBLP)

where Ξ is a risk function that encodes the part of the objective function that depends on
the response to x in the second level, defined by

Ξ(x) = min
{
d1y | y ∈ P1(x), y ∈ arg min{d2y | y ∈ P2(x) ∩ Y }

}
∀x ∈ Rn1

where

P1(x) =
{
y ∈ Rn2

+ | G1y ≥ b1 −A1x
}
and

P2(x) =
{
y ∈ Rn2

+ | G2y ≥ b2 −A2x
}

define parametric families of polyhedra containing points satisfying the linear constraints of
the first- and second-level problems, respectively, with respect to a given x ∈ Rn1 . X and Y
are sets representing integrality requirements on the variables x and y respectively.
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The master problem and subproblem are defined as follows.

(MP) : min c1x+ z

s.t. z ≥ Ξ(x)

x ∈ X

(Ξ(x̄)) : min d1y

s.t. y ∈ P1(x̄)

y ∈ {arg min d2y

s.t. y ∈ P2(x̄) ∩ Y }

In the master problem (MP), z is a variable representing the value of the risk function
approximation. The subproblem is to evaluate Ξ(x̄) for a fixed x̄ ∈ X. This subproblem can
be solved as a mixed integer optimization problem upon replacing the second-level optimality
condition with a linear constraint d2y = φ(b2−A2x̄), where φ represents the second-level value
function (and hence φ(b2 − A2x̄) is the optimal value of the second-level problem for fixed
first-level solution x̄). The constraint z ≥ Ξ(x) is then a Benders’ “cut” that is iteratively
strengthened in every iteration of the algorithm until convergence is achieved. Note that
although this is conceptually a single constraint, it is linearized in practice, as we describe
next, so that the master problem is a mixed integer linear optimization problem.

In (MP), Ξ(x) is a lower-approximation for the risk function and can be constructed
by extracting dual information from the nodes of the branch-and-bound tree resulting from
solution of the subproblem using a technique similar to that proposed in [1] and [2]. Note
that an upper-approximation φ̄ of φ (the second-level value function) is also required for
constructing Ξ(x). This is obtained by considering a certain restriction of the second-level
problem. The approximation of the risk function we employ is then

Ξ(x) = min
t∈T
{(b1 −A1x)η1t + (b2 −A2x)η2t + (φ̄(b2 −A2x))η3t + η4t },

where T represents the set of all leaf nodes of the branch-and-bound tree resulting from
solution of the subproblem and (η1t , η

2
t , η

3
t , η

4
t ) is the dual solution at leaf node t. Since the

function Ξ(x) is nonlinear, the resulting Benders’ cut would be nonlinear. We further linearize
it by introducing binary variables in order to ensure that the master problem is a mixed integer
linear optimization problem. This approximation function is guaranteed to yield a convergent
algorithm.

Our branch-and-Benders-cut algorithm embeds the described Benders’ algorithm in a
branch-and-bound framework for mixed integer bilevel linear optimization problems. As with
any branch-and-bound framework, the main components of the algorithm are bounding pro-
cedures, pruning rules, and branching strategy. These components are designed in accordance
with the special features of these bilevel optimization problems, as described in [3]. Compu-
tational results using an open-source implementation will be presented.

Keywords: Benders’ algorithm, mixed integer bilevel linear optimization, value function,
risk function
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Abstract This paper provides a new method to obtain strongly stationary points for math-
ematical and equilibrium problems with equilibrium constraints (MPECs and EPECs). The
MPECs and EPECs considered have a complementarity problem at the lower-level, with the
complementarity constraints linear. We use a nonlinear optimization algorithm which finds
stationary points of an optimization problem with a bilinear objective function and linear
constraints. Numerical evidence shows this method works for moderately sized EPECs, and
outperforms current algorithms. Along with numerical examples, we provide an application
to the US Biofuel market to show the usefulness of the algorithm.

MPECs and EPECs arise in engineering and economics applications including multi-
leader-follower games, hierarchical optimization problems, networks, and robust optimiza-
tion. However, solving large scale EPECs is computationally challenging due to the non-
linearities in the problem structure and the disjoint, non-convex feasible regions. Current
gradient-based methods rely on diagonalization or introduction of binary variables to obtain
stationary points, which might or might not be local equilibria. We introduce a computational
approach that does not use any of these techniques, but rewrites the equilibrium conditions
as a complementarity problem using duality theory.

Mathematically, an EPEC is an equilibrium problem constrained by a lower-level problem
that can be an optimization problem, a variational inequality problem, or, as this paper’s
focus, a mixed complementarity problem (MCP). Formally, having a function ψ : Rnz → Rnz

an MCP is to find a vector z ∈ Rnz such that:

z ≥ 0;ψ(z) ≥ 0; zTψ(z) = 0 (1)

An EPEC is an equilibrium problem of n MPECs. An MPEC, for player i (MPECi) is
given by

min
xi

f i(xi, x̄i)

s.t. gi(xi) ≤ 0;hi(xi) = 0 (2)

0 ≤ Gi(xi, x̄i) ⊥ H i(xi, x̄i) ≥ 0

where the continuous variables xi ∈ Rnxi , are, respectively, the vector of MPECi’s decision
variables, x̄i ∈ Rnx̄i are a vector of decision variables for the other MPECs, {f i(xi, x̄i)}ni=1 are
objective functions for each MPEC, 0 ≤ Gi(xi, x̄i) ⊥ H i(xi, x̄i) ≥ 0 are the complementarity
conditions in the form of (1), and f, g,G,H are all continuously differentiable.
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A solution to an EPEC is given by an equilibrium x∗ = (x∗1, x
∗
2, x

∗
3, ..., x

∗
n) among n players

such that for each player i, f i(x∗i , x̄
∗
i ) ≤ f i(xi, x̄

∗
i ) for all xi ∈ {xi|gi(xi) ≤ 0;hi(xi) = 0, 0 ≤

Gi(xi, x̄i) ⊥ H i(xi, x̄i) ≥ 0}.
The general way to solve equilibrium problems is to take the first-order conditions of the

individual optimization problems and combine all of them to solve a system of equalities and
inequalities. However, when each individual optimization problem is an MPEC, the Karush-
Kuhn-Tucker conditions are neither necessary nor sufficient. MPECs fail to satisfy several of
the computationally tractable constraint qualifications, simply because of the complementar-
ity constraint, which is bilinear. But we can still define stationary points for MPECs [1] as
follows. Let x∗ = (x∗1, x

∗
2, x

∗
3, ..., x

∗
n) be a feasible point for MPECi (2). Define the following

active and biactive index sets:

Ig(x∗) := {k|gik(x∗)} = 0; I0+ := {k|Gi
k(x∗) = 0, H i

k(x∗) > 0}
I+0 := {k|Gi

k(x∗) > 0, H i
k(x∗) = 0}; I00 := {k|Gi

k(x∗) = 0, H i
k(x∗) = 0}

There are many stationarity concepts for MPECs, but we will restrict ourselves to the
main ones. The feasible point x∗ = (x∗1, x

∗
2, x

∗
3, ..., x

∗
n) for MPECi is said to be

• Weakly Stationary if there are multipliers λg ∈ Rm, λh ∈ Rp, γ, ν ∈ Rq such that
∇xif

i(x∗) +
∑m

k=1 λ
g
k∇xig

i
k(x∗) +

∑p
k=1 λ

h
k∇xih

i
k(x∗)−

∑q
k=1 γk∇xiG

i
k(x∗)

−
∑q

k=1 νk∇xiH
i
k(x∗) = 0; 0 ≤ λg ⊥ −gi(x∗) ≥ 0; hi(x∗) = 0;

γk = 0 (k ∈ I+0(x
∗)); νk = 0 (k ∈ I0+(x∗))

• C-Stationary if it is weakly stationary and γkνk ≥ 0 for all k ∈ I00(x∗)

• M-Stationary if it is weakly stationary and γk > 0, νk > 0 or γkνk = 0 for all k ∈ I00(x∗)

• Strongly Stationary if it is weakly stationary and γk ≥ 0, νk ≥ 0 for all k ∈ I00(x∗)

Stationary Points for EPECs are defined in terms of the MPEC stationary points above: A
vector is a Strongly Stationary (Weakly Stationary, C-Stationary, M-Stationary) point of the
EPEC if for each i ∈ 1, ..., n, x∗ is a Strongly Stationary (Weakly Stationary, C-Stationary,
M-Stationary) point for each MPEC.

Note that all these stationarity concepts only differ by what is happening in the biactive set
I00(x

∗). The difference occurs in the values of the multipliers associated with G and H when
both constraints are active. These differences can be realized by just taking the first-order
conditions for each MPEC, and then simplifying. We show how not simplifying completely
can lead to simpler optimality conditions, and a new format for developing algorithms for
problems with equilibrium constraints.

Our objective is to prove that the proposed complementarity-based formulation of the
EPEC outputs stationary points that are equilibria of the corresponding EPEC. Our ap-
proach is to express the MPEC and EPEC above as a complementarity problem by decom-
posing the dual variables associated with the bilinear constraints. We then solve the problem
using techniques for optimizing a bilinear objective function over a polytope. The proposed
computation strategy is justified because it involves solving one complementarity problem
as opposed to using binary variables or solving a sequence of optimization problems with
equilibrium constraints as current methods do. We leverage previous work by using existing
theory of stationary Points for MPECs and EPECs as well as building on existing algo-
rithms for optimization over polytopes. Note that while previous researchers have formulated
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complementarity-based formulations of EPECs [2],they contain nonlinear terms in the con-
straints, which means that standard complementarity problem theory cannot be applied for
analysis. Instead of non-square, nonconvex formulations for each individual MPEC, we pro-
pose convex, square systems that converge to strongly stationary points. These algorithms
will be tested against available techniques, and shown to be more computationally efficient
through numerical and theoretical evidence.

The first main insight stems from decomposing the dual variables associated with the con-
straints G and H, which will guide new theory for optimality of MPECs and drive convergence
to a strongly stationary point. Decomposing the duals associated with these constraints is
a natural way to try and converge to stationary points. Consider the following complemen-
tarity problem. We have added surrogate variables p, q, u, v and have decomposed the dual
variables γk and νk into their positive and negative parts. The surrogate variables ensure that
any point that satisfies the problem below is a strongly stationary point.

Formulation of approach: Find x∗ ∈ Rnx , λg ∈ Rm, λh ∈ Rp and u, v, λu, λv, λG, λH ∈
Rq such that the following conditions are satisfied:
∇xif

i(x∗)+
∑m

k=1 λ
g
k∇xig

i
k(x∗)+

∑p
k=1 λ

h
k∇xih

i
k(x∗)−

∑q
k=1(λ

G
k −λuk)∇xiG

i
k(x∗)−

∑q
k=1(λ

H
k −

λvk)∇xiH
i
k(x∗) = 0; 0 ≤ λg ⊥ −gi(x∗) ≥ 0; hi(x∗) = 0; 0 ≤ λG ⊥ Gi(x∗) ≥ 0;

0 ≤ λH ⊥ H i(x∗) ≥ 0; 0 ≤ p ⊥ u−Gi(x∗) ≥ 0; 0 ≤ q ⊥ v −H i(x∗) ≥ 0;
0 ≤ u ⊥ p+ v ≥ 0; 0 ≤ v ⊥ q + u ≥ 0;
0 ≤ λv ⊥ K(H i(x∗))− λu ≥ 0; 0 ≤ λu ⊥ K(Gi(x∗))− λv ≥ 0.

Note that in our formulation γk = λGk − λuk and νk = λHk − λvk as we have decomposed
the duals associated with the complementarity constraints into positive and negative parts.
Computationally, this makes sense as any algorithm we improve will need information from
both the duals. We can easily prove that if a standard complementarity problem algorithm
(e.g., PATH ) is applied to our formulation and outputs a solution, it will yield a strongly
stationary point. Note that we have to choose a large enough constant K in this formulation,
which is similar to the constant used in disjunctive constraints. This can be problem specific.
We can formulate the above conditions without this constant K by the addition of further
surrogate variables, but then this will only yield an M-stationary point.

More importantly, this problem does not contain any bilinear terms, and in many appli-
cations, this system of equations is linear. Thus, we should be able to use existing nonlinear
optimization algorithms over polytopes [3], which will be presented as part of our work.
Specifically, we will look at a multiplayer setting in the US Biofuel market as an example
where we can apply our efficient solution technique for problems with equilibrium constraints

Keywords: Stationarity, Complementarity, Energy
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Abstract On December 2015, the European Commission adopted a package to support the
EU’s transition to a circular economy (see [1]). Looking beyond the current linear economy
approach based on “take, make and dispose” industrial models, the circular economy foster
the principle of the “reusing-reducing-recycling” raw materials to guarantee energy saving and
to reduce greenhouse gas emissions. In a circular economy the value of products and materials
is maintained for as long as possible. This “closing the loop” of product lifecycles through
greater recycling and re-use represents an important step towards a sustainable economy.
Waste plays an important role in the circular economy project since it can be adopted to
produce energy. The waste and, more in general, the biomass can be considered as appealing
sources of renewable energy that can be used to meet the environmental targets set out by
the European Commission. We recall that, in 2005, the European Union has launched the
European Emissions Trading System (EU-ETS), which is the first and largest cap-and-trade
system in the world. This scheme imposes a cap on greenhouse gas emissions generated by
power, industrial, and transport sectors (Directives 2003/87/EC and 2009/29/EC). The EU-
ETS is one of the main tools designed to achieve the so-called 20-20-20 European targets by
2020. These ambitious targets aim at reducing CO2 by 20% compared with 1990, at obtaining
a 20% share of renewable-based energy in final energy consumption, and at reducing primary
energy consumption by 20% compared with projected levels by improving energy efficiency.
The accomplishment of these benchmark represents the first step towards the achievement of
a low-carbon economy, as stated in the Energy Roadmap 2050.

In this paper, we consider the point of view of a power producer which manages a waste-
to-energy supply chain and has to decide the amount of electricity to sell on the day-ahead
market, taking into account its technology portfolio. In particular, we assume that the power
producer disposes of technologies for the waste-to-energy treatment, renewables and conven-
tional power plants. For this analysis, we propose a bilevel model, where the upper-level
problem describes the operation decisions that the power producer takes in order to minimize
its costs, while the lower-level problem represents the clearing of the day-ahead electricity
market where other generators can participate (see [2] and [3]). Finally, a carbon regulation
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on electricity production and uncertainty on renewable energy generation are considered.

Keywords: Waste-to-energy, circular economy, uncertainty, bilevel programming.
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Abstract In the last three decades, an increasing number of countries worldwide have liber-
alized their electricity power sectors. Electricity prices are now determined by an equilibrium
of supply and demand, which introduces a substantial price risk with volatilities much higher
than those of equity prices. A big share of the total electricity in liberalized power markets is
traded over the counter through bilateral agreements: it has been completed for some years
in Scandinavia and the United Kingdom, is well under way in the United States and be-
ing embraced in most continental Western Europe,1 Germany and the Netherlands are quite
deregulated, followed by Spain. Italy is establishing power trading in a competitive environ-
ment. This represents a multi-billion spot market that is developing very quickly. And the
same pattern of evolution as in the financial markets is being observed, with the growth of a
variety of derivative instruments such as forward and futures contracts, swaps, plain-vanilla
and exotic options ((i.e. non-standard) options like spark spread options, swing options and
swap options).

In liberalized electricity markets, business risks can be effectively managed through con-
tracts. Generators, retail suppliers and consumers can agree on prices, volumes, times and
other conditions that create the desired certainty within the framework of the contract. In
fact, liquid and effective markets for financial contracts improve competition by enabling so-
phisticated risk management. This, in turn, eases market access for new and smaller market
players and contributes to ensuring that market power is not exercised. Most markets pro-
vide a framework for a liquid market in the day-ahead and real-time segments through market
rules and design.

As electricity markets mature throughout the world, futures markets become more and
more liquid and relevant for electricity trading. Futures markets allow trading products
(mainly forward contracts and options) spanning a large time horizon, e.g., one month, while
spot markets are typically cleared on an hourly basis throughout the time periods spanned by
the futures market products. Thus, futures and spot markets interact and such interaction
results in multi-market equilibria. [2].

Ruiz et al. in [2] provide an electricity equilibrium model involving a futures market and a
collection of successive spot markets within the time span of the considered future derivatives.

1European reform was pursued at two parallel levels. First, under EU Electricity Market Directives, member
countries were required to take at least a minimum set of steps by certain key dates toward the liberalization of
their national markets. Second, the European Commission promoted efforts to improve the interfaces between
national markets by improving cross-border trading rules, and to expand cross-border transmission links.
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They conclude that the analytical results obtained are applied to a market involving different
competition levels: monopoly, cartel, conjectural variation, Cournot and perfect competition.

However, the aforementioned research did not include uncertainty (both production cost
uncertainty and demand uncertainty) and different contracts in their model. Therefore, using
[2] as a departure, in this work, we develop a single spot market and a single futures market
equilibrium models under uncertainty. Moreover, we add contract design (particularly, con-
tracts for differences and two part tariffs contracts) between oligopolistic electricity producers
in the presence of stochasticity with a two stages approach.

We assume a single futures market that is cleared prior to the spot market. Thus, the
quantities sold in the futures market are to be delivered at the time when the single spot
market takes place. Therefore, the novelty in our work is that we develop a simplified single
spot market and introduce the two contracts in the presence of stochasticity, that mainly
focuses on cost uncertainty and demand uncertainty, knowing that price and quantity are
decided in advance. Contracts for differences and two part tariffs are assessed as a coordination
mechanism for risk hedging and investment, which is also inspired by [1].

Finally, since operators are usually risk averse, a coherent risk measure is introduced to
deal with both risk neutral and risk averse operators. To that end, this work has thrived to
come across with the objective of developing simple and realistic models for the volatile and
recently deregulated electricity market that can be recast as a mixed linear complementarity
problem. Equilibrium conditions at each spot market are described as a function of the
futures market decision variables, which in turn allows describing the equilibrium in the
futures market implicitly enforcing equilibrium in each spot market.

Keywords: Spot and future electricity markets, stochastic programming, risk aversion
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Abstract Motivated by the problem of market power in electricity markets we introduced
a mechanism design in a previous work for simplified markets of two agents with linear
production cost functions. In standard procurement auctions, the market power resulting
from the quadratic transmission losses allows the producers to bid above their true value,
which are their production costs. The mechanism proposed in the previous paper, based on
Stackelberg models, reduces the producers’ margin to the society’s benefice. In this paper,
we extend those results to a more general market made of a finite number of agents with
piecewise linear cost functions, which makes the problem more difficult, but simultaneously
more realistic. We show that the methodology works for a large class of externalities. We
also provide an algorithm to solve the principal allocation problem.

Keywords: energy market, pricing, principal agent model, Stackelberg, market power,
mechanism design, network economics
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Abstract
The power systems operation requires a continuous and real-time balance between gener-

ation and consumption. In this context, satisfying peaks of demand can be a challenging and
expensive task for systems operators and utilities, since following a fast increase in demand
normally leads to the use of more flexible but more expensive generation technologies.

Demand response (DR) is increasing in popularity as an effective way to support the
supply-demand balance. DR programs are designed to encourage end-users to modify their
normal consumption profile in a way that contributes to the operation and the economical
feasibility of the system or even to avoid critical situations such as blackouts.

The potential benefits of DR increase with the integration of renewable generation to power
systems. In this scenario, the traditional generation accounts for the net demand, which
is defined as the electricity demand minus the renewable generation. Since the renewable
resources are typically intermittent, they can bring sudden and even more pronounced peaks
in the net demand curve.

Different DR programs are offered to different consumers. Predefined consumption re-
duction agreements are traditionally oriented to large customers while pricing programs are
common for residential users around the world. Pricing programs offer the end-users a set of
energy tariffs that approximates the generation cost function. This way the consumers are
encouraged to shift their load to periods when they can profit from lower prices.

A time of use (TOU) program introduces at least two different energy prices during the day,
accounting traditionally for the on-peak and the off-peak hours. This idea has been widely
included in optimization models for demand side management (DSM) for smart buildings.
These DSM models normally minimize the user’s cost function by planning or scheduling the
use of appliances and other devices, considering user’s preferences, user’s dissatisfaction, etc.
As expected, the optimization models succeed in shifting the consumption from on-peak to
off-peak periods. This approach makes sense in a local perspective, for up to a few users, but
raises other questions about how the shifting behaviour in a large population can affect the
generation cost function. In other words, large shifted consumption might lead to rebounds
peaks.
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This question was partially addressed in [1] using a time and level of use (TLOU) policy.
Similarly to TOU, TLOU presents a set of different energy prices but it includes a second
set of energy prices that apply to consumption above a certain capacity limit. This approach
brings a power-wise perspective by penalizing high consumption per time frame. The authors
in [1] show that a proper definition of the tariffs and capacity limits for the TLOU can avoid
rebounds peaks for small populations using optimization-based DSM systems.

This work looks into the setting of TLOU tariffs and capacity limits for large populations.
It uses a bi-level optimization problem where the utility is the leader who minimizes the
generation cost and the end-users are the followers minimizing their individual cost function
by utilizing a DSM module. We present experimental results and a sensitivity analysis based
on realistic data to validate the effectiveness of the proposed approach.

Keywords: Bi-level programming, Demand response, Smart Grids
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Abstract The electricity sector has been open to retail competition, including to residential
customers. Retailers procure electricity in wholesale markets or through bilateral contracts,
and then offer flat or (slightly) variable time-of-use pricing schemes to their residential cus-
tomers for the contract period (e.g., one year), thus managing the risk involved. Those price
signals do not reflect varying generation costs, namely in systems with a significant penetra-
tion of intermittent renewable generation, and network conditions, such as congestion. Dy-
namic tariffs, i.e. energy prices varying possibly with significant magnitude in short periods of
time, have the potential to modulate demand thus contributing to improve the overall system
efficiency, lowering peak generation costs, facilitating the penetration of renewable sources,
reducing network losses and deferring network reinforcement investments, while offering eco-
nomic benefits to customers. These price incentives will motivate consumers to engage in
different consumption patterns, namely by using the flexibility they generally have in the op-
eration of some appliances (end-use loads) through adequate demand response actions, which
may turn beneficial to the grid. After receiving tariff information some time in advance (e.g.,
one day), the consumer’s home energy management system (HEMS) is able to respond by
scheduling the operation of laundry machines, electric vehicle charging, etc. Different oper-
ation schedules represent distinct trade-offs between the minimization of the electricity bill
and the minimization of the discomfort associated with postponing/anticipating load opera-
tion to different periods. HEMS have communication capabilities to receive grid information
(prices and possibly emergency requests), are parameterized with the customer’s energy usage
preferences and are able to control loads through on/off plugs.

In this setting, electricity retailers should design commercial offers of dynamic tariffs to
maximize profits, i.e. its optimal pricing scheme, subject to consumer’s response. Consumers
want to minimize costs, also taking into account comfort requirements and preferences asso-
ciated with the operation of loads in appropriate time slots. There is a hierarchical relation
between retailers and consumers: retailers determine prices and consumers react by scheduling
their loads accordingly. Since HEMS, on behalf of consumers, are able to deviate consumption
of shiftable loads (dishwashers, laundry machines, etc.) to lower price periods, the retailer’s
profits may decrease due to consumer’s decisions. This interaction can be modeled as a bi-level
(BL) optimization problem.
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This work presents a BL optimization model to determine the optimal pricing scheme to
be established by the retailer (upper level decision maker, the leader) to maximize profits, i.e.,
the revenue from selling energy to consumer minus the cost of purchasing the energy in the
spot market, and the load schedule adopted by the consumer (lower level decision maker, the
follower) under that price setting to minimize the electricity bill and minimize the discomfort
associated with the operation of appliances outside the most preferred (or habitual) periods.
Discomfort is assessed by means of penalty coefficients associated with time slots; the more
or less stringent penalties characterize the degree of willingness of consumers to engage in
demand response regarding each appliance. This is a semi-vectorial bi-level (SVBL) model,
with a single objective in the upper level and two (conflicting) objective functions in the
lower level. The lower level optimization problem is formulated as a multi-objective mixed-
integer linear programming (MOMILP) model. This SVBL model is an extension of the single
objective BL optimization model presented in [1].

Upper level decision variables are the price charged by the retailer to the consumer during
each sub-period of the planning period (dynamic tariffs during one day). The lower level
decision variables represent whether a given load j is “off” or “on” at time t of the planning
period and stage r of its operation cycle; these variables are used to determine the power
requested to the grid by each appliance in each stage (auxiliary continuous variables). The
binary decision variables are defined only for t in the time slot allowed for the operation of
each load according to the consumer’s comfort requirements. Consumer’s decisions are thus
modeled at appliance level, considering typical operation cycles, as well as information about
time slots preferred for operation of shiftable loads, which is essential to obtain realistic load
characterization and demand response actions.

Upper levels constraints define the upper/lower bounds for the energy prices charged to the
consumer in each sub-period and set an average price in the planning period, as a surrogate
to model competition in the electricity retail market. Lower levels constraints impose that
the contracted power is not exceeded at any time t of the planning period and consistency
conditions regarding load operation within its allowed time slot.

The SVBL model is tackled using a hybrid approach consisting of a genetic algorithm (GA)
for the upper level problem and an exact MILP solver to solve surrogate scalar problems (i.e.
combining both objective functions) at the lower level for a given electricity price setting.

The consideration of multiple objective functions at the lower level introduces further
challenges regarding computational difficulties to ensure that solutions are actually non-
dominated and the need for the retailer to examine a set of extreme outcomes resulting
from his optimistic/pessimistic stance and the possible consumer’s reaction. In this setting,
the computation of four extreme (optimistic, pessimistic, deceiving and rewarding) solutions
offers comprehensive information for the retailer’s decision process. The optimistic solution
indicates the leader the maximum profit when the follower’s decision for each upper level
variables setting is the best for the leader. The deceiving solution results whenever the leader
makes an optimistic decision and the follower’s reaction is against the interests of the leader,
i.e. it results from a failed optimistic approach. The pessimistic solution gives the maximum
profit for the leader when the follower’s decision for each upper level variables setting is the
worst for the leader. The best return of a pessimistic approach is the rewarding solution,
which is obtained whenever the leader takes a pessimistic approach and the follower’s reac-
tion is the most favorable to the leader. These four extreme solutions will be exploited since
they offer the retailer useful insights about the ranges of possible profit values under different
perspectives of analysis. This is particularly interesting if the leader has no information about
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the trade-offs the consumer is willing to make between the economic and comfort dimensions
after knowing the electricity prices set by the retailer.

The presentation will address the following main topics:

• single objective BL mathematical model and its extension to the SVBL model to study
the interaction between a retailer designing dynamic tariffs and responsive consumers
who weigh the electricity bill against comfort requirements;

• a hybrid algorithmic approach encompassing a GA and a MILP solver;

• the exploitation of the optimistic, deceiving, pessimistic and rewarding solutions for
decision support purposes;

• the incorporation of the consumer’s preferences to compute other non-dominated solu-
tions trading-off the economic and comfort dimensions.

Keywords: Semivectorial bilevel optimization, Multi-objective optimization, Genetic al-
gorithms, Hybrid approaches, Demand response, Electricity retail markets

References

[1] Alves, M.J., Antunes, C. H., Carrasqueira, P., A hybrid genetic algorithm for the inter-
action of electricity retailers with demand response, G. Squillero and P. Burelli (Eds.):
EvoApplications 2016, Part I, LNCS 9597, 459–474, Springer, 2016.

3



Contributed session

Heuristic Algorithms for a Bilevel Service Network

Design and Pricing Model

Christine Tawfik∗

QuantOM, HEC Management School, University of Liege (ULg),
christine.tawfik@uliege.be

Sabine Limbourg
QuantOM, HEC Management School, University of Liege (ULg),

sabine.limbourg@uliege.be

Abstract Pricing decisions play a crucial role in positioning a certain product or service.
They involve a non-trivial tradeoff between increasing revenues and keeping the service eco-
nomically appealing, which requires a wise management of the underlying costs and a knowl-
edge of the market situation in terms of the customers’ alternative options. In the context of
freight transport services, this stream of problems is equally relevant in the rise of reduced
policy interventions (e.g., deregulation, privatisation, etc.), and particularly for rail-based
transport, where operators are typically required to make months-long slots’ reservation re-
quests from the infrastructure managers in light of their expected demands. Other related
system examples could include trucking and container shipping lines.

This work is devoted to jointly examining the intertwined tactical problems of designing
freight carrying services and determining their associated prices as observed by the shipper
firms. We put forward a bilevel model, where the main decision maker (a leader) is por-
trayed at the upper level, as a freight transport operator seeking to maximize his/her profits
by setting the services’ tariffs and selecting their subsequent operating frequencies. At the
lower level, the shippers (followers), faced with itineraries composed of the leader’s services
and an always present competition’s alternative, react to the leader’s decisions in a costs’
minimization fashion. As a more precise application context, we consider the leader and the
competition as providers of freight-carrying intermodal and trucking services, respectively.
Intermodal is used with the interpretation of a multimodal chain of transport services, where
the long haul is performed by environment-friendly transport modes with higher payloads,
such as rail or inland waterways (IWWs), and road is used for the shortest possible initial
and final parts of the journey. The market is thus assumed to consist of small customer ship-
pers seeking to take advantage of freight consolidation, by choosing to send their demands
between the proposed intermodal itineraries and the trucking alternative, with the possibility
of splitting their volumes over several paths.

A linearised mixed-integer programming (MIP) formulation is developed, extending both
the path-based multicommodity service network design model in [1] and the bilevel joint
design and pricing problem in [2]. Capacitated services and discrete design variables are con-
sidered depicting their frequency decisions, as opposed to the classical open-close approach,
adding in turn a considerable complexity to the problem. The linearisation steps yield a for-
mulation involving big M constants, which is further enhanced by studying feasible theoretical
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bounds. The model is invoked on real-world instances representing large-scale demands at
the European continental level, using the classic solver CPLEX. The obtained results suggest
a room for improvement, especially in terms of the computation time.

Therefore, we discuss two heuristic approaches to solve the proposed model, addressing
its main point of difficulty stemming from the network design part. The first algorithm is
based on the idea of starting with an initial, yet costly, services’ schedule that is able to
accommodate all shipping demands, then, in an iterative manner, decrease the frequencies
of those services that do not considerably or positively contribute to the leader’s generated
gain. The initial solution is obtained from a version of the model with the integral design
variables being relaxed: a problem that can converge to optimality in a short amount of time.
Afterwards, an iterative procedure is invoked to solve a set of restricted MIP formulations of
the model, where a set of the services’ frequencies is fixed to the values obtained from the
previous iteration. At each step, the choice criteria to decrease the frequency of a certain ser-
vice are based on its load factor or profit margin’s level. Checking techniques are additionally
implemented to prevent the algorithm from re-visiting older services’ schedules. Finally, the
procedure is stopped when objective stagnation is reached and the solution associated with
the maximum obtained objective value so far is returned.

Second, a heuristic algorithm is designed based on the Lagrangean relaxation framework.
More specifically, we identify the service capacity constraints as the complicating ones and
append them to the objective to obtain a Lagrangean function. The subgradient optimization
algorithm is then applied to find the values of the Lagrange multipliers, where a lower bound
on the solution is obtained by an initial constructive heuristic. Due to the particular costs’
structure in the objective function, the mutlipliers are initialized with their theoretical lower
bounds, instead of an arbitrary value. As in classical Lagrangean heuristics, we seek to restore
the feasibility of the obtained solution through a procedure that re-routes the excess volumes
on the services whose capacity is violated.

The two developed algorithms are tested on real-world instances with varying sizes and
logistics properties. The main points of differences are highlighted, as well as the potential
enhancements to achieve solutions with higher qualities.

The underlying research in this work is conducted in accordance with the project BRAIN-
TRAINS, concerned with the future of rail freight intermodality in Belgium and Europe,
and funded by the Federal Science Policy according to the contract n. BR/132/A4/BRAIN-
TRAINS.
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Abstract We study the fixed charge network design problem with user-optimal flows, which is
modeled as a bi-level programming problem. We propose a new Binary Integer Programming
(BIP) formulation. This formulation is used to solve the problem by cutting plane and branch-
and-cut algorithms. Numerical experiments are performed on realistic instances as well as on
random data sets generated with different criteria to examine the difficulty of the instances.
The results also show the efficiency of our proposed approaches.

Keywords: Network design, Bi-level programming, Cutting plane, Branch-and-Cut.

1 Introduction

The Fixed Charge Network Design Problem (FCNDP) consists in selecting a subset of edges
from a given network, in such a way that a set of commodities can be transported from its
origins to its destinations. The objective is to minimize the sum of fixed costs (depending on
the selected edges) and variable costs (depending on the flow of commodities on the edges).
There are several variants of FCNDP in the literature, each of which considers a particular
objective function or takes into account specific additional constraints.

Herein, we are interested in a specific variant of the FCNDP, namely Fixed Charge Net-
work Design Problem with User-Optimal Flows (FCNDP-UOF) with applications in the trans-
portation network design problem for transportation of hazardous materials. This problem
combines the FCNDP with multiple shortest path problems.

2 Problem description

We consider a transport network modeled by an undirected graph G(V,E), where V represents
the set of facilities and E represents the connections between them, which are uncapacitated.
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There is a set of K commodities to be delivered in the transport network G(V,E), where
each edge e = {i, j} is associated with several parameters: a length cij , a fixed cost fe and a
variable cost gkij for each commodity k. Our objective is to design a subnetwork with minimum

total cost to transport K commodities such that each commodity k ∈ K with a flow φk can
be delivered through the shortest path from its origin o(k) to its destination d(k) in this
subnetwork. The FCNDP-UOF has been first formulated as a bi-level integer programming
problem [2], and then it is further reformulated as one-level mixed integer programming
models through replacing the second level by its optimality conditions in [2] and [3]. More
recently, a cutting plane algorithm based on a set of valid inequalities is proposed in [1].

3 Proposed methods

We propose in this work a new Binary Integer Programming model (BIP) for the FCNDP-
UOF. To this end, we replace the objective function of the second level by valid inequalities
eliminating infeasible solutions. Denoting the set of all paths in the graph by P, our BIP
formulation is given as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈E

φkgkijx
k
ij (1a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K, (1b)

xkij + xkji ≤ ye, ∀e ∈ E,∀k ∈ K, (1c)∑
(i,j)∈E

xkij ≤ c(P ′) + (|P ′| −
∑
e∈P ′

ye)M, ∀P ′ ∈ P, k ∈ K, (1d)

xkij ∈ {0, 1} , ∀i, j ∈ E,∀k ∈ K, (1e)

ye ∈ {0, 1} , ∀e ∈ E,∀k ∈ K. (1f)

Where, ye is a binary variable takes value 1 if the edge e is chosen as a part of the solution
network, and the variable xkij represents the flow of commodity k through the arc (i, j).

In (1b), we have flow conservation constraint. Constraint (1c) does not allow flow to enter
arcs whose corresponding edges are closed, (1d) eliminates all paths with a cost bigger than
the cost of an opened path in the network. Finally, (1e) and (1f) impose the variables xkij and
ye to be binary.

Based on this formulation, we implemented two methods to solve the problem. The first
one is a cutting plane algorithm in which we solve the initial problem defined in (2) below so
that we can obtain a subnetwork y∗, and a set of paths x∗ for all origin-destination pairs.

min

∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈E

φkgkijx
k
ij , s.t. (1b), (1c), (1e), (1f)

 (2)

Then, they check if x∗ is the shortest path in y∗. If it is the case, then (x∗, y∗) is optimal for the
FCNDP-UOF. Otherwise, a valid inequality (1d) is added to problem (2) for the commodities
with infeasible paths. We repeat the procedure until an optimal solution is obtained.

The above approach can be expensive in terms of number of iterations to get the optimum.
Thus, our second strategy is to combine the two methods together to form a “branch-and-
cut” algorithm, known to be an efficient way to handle such constraints. The latter algorithm
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solves the problem (2) by a branch-and-cut procedure that adds the inequalities to each
integral node violating the shortest path constraint.

Our second contribution lies in assessing the difficulty of the instances used in the sim-
ulations. To this end, we categorize the instances by calculating the angle α between the
objective function vectors of the first and the second levels.

We have coded and compared the performance of six algorithms listed as follows:

B&B1, B&B2: One-level formulations from [2] and [3], respectively;

CP1, B&C1: The cutting plane and branch-and-cut algorithms proposed in this work;

CP2, B&C2: The Cutting plane algorithm proposed by [1] and branch-and-cut algorithm
coded using the same valid inequalities.

Numerical tests are performed using both random and real data sets. Tab. 1 compares
the number of instances solved to optimality in 3600s by the six methods. The table shows
that the two proposed cutting plane approaches have a comparable performance and they
solves more instances optimally than the others. Our cutting plane algorithm CP1 has also
the best CPU times for the both data sets.

Table 1: Number of instances solved to optimality
Total B&B1 B&B2 CP1 CP2 B&C1 B&C2

0◦ ≤ α ≤ 10◦ 135 100 109 110 110 110 109
40◦ ≤ α ≤ 50◦ 135 88 89 95 95 94 92
80◦ ≤ α ≤ 90◦ 135 88 97 105 105 102 102
Ravenna data 7 6 3 7 7 4 4

Sum 412 283 301 317 317 310 307

4 Conclusions and future work

For the FCNDP-UOF, we proposed a new BIP formulation, which is solved by both a cutting
plane and a branch-and-cut algorithms. Numerical results demonstrate that the cutting
plane algorithm based on the proposed BIP formulation outperforms the other algorithms.
The instances with an angle of 40◦ ≤ α ≤ 50◦ are the most difficult. For future work, we
intend to work on exact approaches for the case of the FCNDP-UOF, where the capacity
constraint on edges is considered.
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Abstract

1 Introduction

Hazardous material accidents can have tremendous consequences for the population. One of
the worst accidents of this kind in recent history happened in July 2013 in Lac-Mégantic,
QC in Canada. A driver-less train with 72 tank cars of petroleum crude oil derailed in the
city center and caused the death of at 47 persons. Moreover, at least 30 buildings and 115
businesses were destroyed and it took almost 2 days to control the fire. But the transport
of hazardous materials is essential not only for industrial countries like Canada, Germany
and United States but also for developing countries. The four frequently shipped hazardous
materials are - with 80% of the transported volume in Canada - crude petroleum, gasoline,
fuel oils and non-metallic minerals. In 2012, 2,580 million tons of hazardous materials where
shipped throughout the United States. 59.4% where transported by truck, 4.3% by rail, 11%
by water and 24.3% by pipeline in single mode transportation. Only 1% was transported by
more than one mode. In Canada, the rail has a much higher relevance. In 2012, 26.1 million
tons were transported by rail and 107.4 million tons by truck. The different structure of the
network in Germany, which is, compared to North America, very dense, is also reflected in the
share of used transportation modes: In 2010, 56 million tons were transported by maritime
transport, 48 million tons on inland waterways, 63 million tons by rail and 140 million tons
by trucks. Therefore, the consideration of different transportation modes is essential for the
risk calculation whenever regulating the transport of hazardous materials. Yet, the different
streams of research investigate the transportation of hazardous material either on roads [1]
or on rail [2] separately.

We aim to fill this gap by considering different transportation modes within the Hazmat
Transport Network Design Problem (HTNDP). Moreover, classical risk definitions neglect
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that the risk in a population center is influenced by all links in the area of the popula-
tion center. This is certainly true when the network consists of different modes, but also
when, for example, several roads enter or pass by a city. Therefore, we further introduce a
new population-based risk definition to evaluate the risk in population centers. For the fair
distribution of risk among the population, different objective functions are introduced and
compared. The proposed multi-mode multi-commodity bilevel formulation is transformed
into a mixed-integer linear program and evaluated in a numerical study to show the benefits
of the concept compared to classical risk definitions.

2 Problem definition

The society requests a fair distribution of risk over the population and the government or
authority wants to achieve that by deciding if a link of the network is allowed for the trans-
portation of hazardous materials or not. Therefore, the authority has to anticipate the re-
action of the carriers who are shipping commodities with origin, destination, transportation
amount and hazardous material type through the network. The carriers minimize their trans-
portation costs subject to demand satisfaction by deciding on the transportation path of the
commodities. Compared to previous studies, we not only consider different transportation
modes in the network, but allow also the carriers to decide on the transportation mode of the
shipment.

2.1 Population-based risk definition

In classical definitions of the Hazmat Transport Network Design Problem (HTNDP), the risk
is associated with the links of the network [3]. The risk is defined as the accident probability
multiplied by the transported amount of goods and the population in the area of the link.
However, this formulation only distributes the risk fairly as long as only one arc is in the risk
area of a population center. Otherwise, even if the risk is equally distributed on the links,
some population centers can experience a much higher risk than others.

Therefore, we introduce a new definition of risk, which is based on population centers and
not on arcs. A population center can be either a whole town or city or, for larger urban areas,
a part of the city. We define the risk of a population center as the sum over all shipments
on all modes in the influence range of the center weighted with the accident probability of
the link and an influence factor. The influence factor depends on the transported hazardous
material and the distance between the link and the center. It is higher when an arc is closer
to the population center or the transported material is more dangerous.

To equilibrate the risk over these population centers, we use the new risk definition and
investigate different objective functions for the HTNDP. Besides minimizing the overall risk
in the network and the maximum risk in a population center, we consider non-linear risk func-
tions like the maximum and average risk difference of population centers and the maximum
and average deviation to the mean to achieve a fairer distribution of risk.

3 Model, solution method and numerical study

The problem is modeled as a bilevel problem [2] on a graph, where the nodes are important
points in the network and the links are transportation modes like roads or rail tracks between
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these nodes. The government is the leader and the carriers represent the follower. The follower
problem is a capacitated multi-mode transportation problem while the leader problem is the
minimization of one of the various risk functions.

Due to the special structure of the bilevel problem with the binary leader variables (to
allow the usage of an arc or not) and continuous follower variables (flow variables), the
follower problem is replaced by its Karush-Kuhn-Tucker conditions and transformed into a
mixed-integer program. The non-linear objective functions of Section 2.1 are reformulated
into equivalent linear formulations by introducing auxiliary variables and auxiliary constraints
to solve the problem by Xpress.

In the numerical study, we compare our model with the classical model from the literature
and proof the concept of the multi-mode HTNDP and the population-based risk definition.
Further, we analyze the trade-off between risk minimization and risk equilibration using
a biobjective function and show that both objective functions have a convex correlation.
Therefore, a significant improvement in risk distribution can be achieved at the cost of just
a small increase in total risk. The cities with high risk benefit from the risk redistribution
in the beginning. However, strong equilibrations just penalize cities with low risk. Moreover,
compared to classical approaches in the literature, we achieve a better risk distribution among
the population without increasing the total risk.

4 Conclusion

The contributions the extension of the HTNDP to a multimode transportation problem.
Moreover, a new population-based definition of risk and equity risk measures for hazardous
material shipments to fairly distribute risk in a network. The model is used to compare the
different risk equilibration measures and to give insights on the trade-off between risk equi-
libration and risk minimization Finally, a comparison to existing models from the literature
(single-mode and maximum arc risk equilibration) shows the benefits of our approach.

Keywords: hazardous materials transportation; risk equilibration; multimodal, multicom-
modity network design
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Abstract Container transport planners in the hinterland of a port have to deal with un-
certainties in transit time and information availability while managing the a-priori planning
and real-time routing of reliable and cost efficient flows of containers. In this work, we model
the problem faced by a central network orchestrator that aims at planning synchromodal
transport for batches of containers on a short-term planning horizon. In the network, dif-
ferent transport modes (barge, train and truck) are available and characterized by different
unit costs, capacity and stochastic transit time distribution. The model we propose is based
on a planning problem faced by freight forwarders and contributes to the understanding of
synchromodal planning by introducing bilevel problem for the joint capacity booking and
adaptive routing of container on a transport network.

From this perspective, we capture the characteristics of planning synchromodal transport
into an high-level model and gain insights into the value of such a planning approach.

Synchromodal transport is a novel concept suggesting an organization of inland transport
based on two conditions: a-modal booking and adaptive mode, and route, choice (cf. [1]).
The former requirement prescribes that transport mode is not pre-determined at the moment
transport is purchased but kept free for further definition, while the latter implies that routing
and transport mode decisions can be modified in real-time based on updated information on
the status on the network. Those two aspects are the most relevant for our work, other
characteristics of synchromodality can be found reviewed in [6].

Planning models for synchromodal transport have already been proposed but either con-
sider problems on medium term planning horizons or the specific characteristics of certain
companies. An integrated service schedule design approach is described in [1], while an online
optimization problem for assignment of containers to transport services is discussed in [7] for
the case of Rotterdam based terminal and intermodal operator ECT.
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The model we propose is grounded in the stream of research on the adaptive shortest
path problem. In [3], least expected transit time are shown to require a strategy to be found,
rather than a static path. In [4], uncertainty in arc transit times is considered dependent
on the time the arc is traversed and an algorithm to find the adaptive least expected path
is proposed. Finally, in [5], a Markov Decision Process (MDP) models the adaptive routing
problem for a single passenger in a bus transport network with stochastic transit time where
information on buses’ position is explicitly taken into account.

We propose a bilevel programming model were a-priori transport planning and adaptive
routing are considered simultaneously as decisions taken prior to the execution of a transport
plan create the freedom required to react optimally to uncertainty in transit times. We model
the adaptive decision making by defining a MDP for an (s, t)-flow problem on a network where
arcs are characterized by stochastic, time-varying transit time and upper capacities. Knowing
the position of each container in the network, aim of the MDP is to determine an adaptive
routing strategy using available capacity that maximizes the expected number of containers
arriving at the sink node t earlier than a given deadline T . This MDP constitutes the lower
level while selection of available capacities for the adaptive routing occurs at the upper level.
At this level, the aim is that of minimizing the total capacity cost, as capacity booking
generates costs. Bilevel optimization captures “the hierarchical relationship between two
autonomous, and possibly conflictual, decision makers”([2]). This opposing relation can be
found in our approach as the less capacity is selected at the upper level, the lower will be the
objective value of the MDP. The MDP determines the optimal strategy to follow in real-time
to route containers to their destination while the upper level minimizes the requirements in
capacity to be allocated to the lower level( i.e. the MDP).

Our model contributes, therefore, to the current literature by modelling an adaptive prob-
lem on a stochastic, time-varying network when multiple units of flow are considered, rather
than a single one as in the adaptive path problems. Moreover, this problem takes into account
the a-priori allocation of capacity on different transport services to create room for adaptively
react to uncertainty.

Let G = (V,R) be a directed graph, V is the set of nodes and R the set of arcs representing
transport services. Let s, t ∈ V be the source node and the sink node, respectively, and let
K ∈ N be the number of containers1 to be routed to t earlier than a given deadline T ∈ N.
Let T = {0, 1, . . . , T} be the discretized, and possibly relabelled, time horizon. Let cr ∈ N
be the per-unit of capacity cost for allocating capacity to the adaptive planning phase on arc
r ∈ R. We define time-dependent upper capacities ur,θ ∈ N≥0 to represent departure times
(r ∈ R and θ ∈ T ). For arc r ∈ R and departure time θ ∈ T such that ur,θ > 0, we let τr,θ be
T -valued random variable representing the stochastic arrival time for service r departing at
time θ. Let κ ≥ 0 be minimum level of reliability required.

Aim of this problem is to select capacities ~x = (xr,θ)r∈R,θ∈T , such that 0 ≤ xr,θ ≤ ur,θ
for all r ∈ R and θ ∈ T , on the transport network in such a way that total capacity costs
are minimized, provided the optimal adaptive strategy using only up to booked capacities ~x
guarantees an expected number of containers delivered earlier than T of at least ρ units.

By setting a suitable state space S(~x), action space A(~x), reward function Rew(·), tran-
sition probabilities and strategy space ΠMD(~x) depending on the capacity selection ~x, the
adaptive problem can be formulated as a MDP and the resulting bilevel program can be

1Under the same conditions multiple deadlines and multiple destinations can be captured, provided con-
tainers have the same origin. Moreover, only identical containers are considered.
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written as in (1).
We solve this problem by obtaining an LP-formulation of the MDP. Given the LP-

formulation, we deal with the enormous decision space by looking for structural properties
of the optimal strategy on specific classes of graphs. In order to establish the value of the
synchromodal transport, we benchmark against a non-adaptive planning approach that will
be considered under several settings characterized by different levels of a-priori capacity allo-
cations.

min
∑
r∈R

∑
θ∈T

crxr,θ (1)

s.t. 0 ≤ xr,θ ≤ ur,θ ∀r ∈ R,∀θ ∈ T
xr,θ ∈ N≥0 ∀r ∈ R,∀θ ∈ T
y ≥ κ

y = max
π∈ΠMD

E

[
T−1∑
i=0

Rew(Xi, di(Xi)) + RewT (XT )|X0 = s

]
s.t. S = S(~x)

A = A(~x)

ΠMD = ΠMD(~x)

where s is the starting state with containers in node s, π ∈ ΠMD is the list of decision rules
π = (d1, . . . , dT−1) to be taken (di : S → A) and {Xi}Ti=0 is the Markov process.

Keywords: synchromodality, container transport, adaptive flow problem
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Abstract Network design and graph partitioning both are very important topics of discrete
optimization with many different applications. In electricity market design, these problems
often appear as ingredients in multilevel optimization problems. We consider a situation
consisting of the following agents: a regulated transmission system operator (TSO), electricity
supplying firms, and electricity consumers. First, the regulated TSO decides on the expansion
of the current electricity transmission network and partitions the market area into different
price zones. Its overall goal is to maximize the total social welfare. Afterward, taking the
zoning of the market area and the network expansion decision of the regulator as given,
the supplying firms decide on investment in further capacity and trade, together with the
electricity consumers, on a series of spot markets. These spot markets are arranged in a
way that only those physical constraints are taken into account that are defined on the cut
edges of the transmission network, where the cut is given by the partitioning of the market
area determined by the regulator. Hence, many physical constraints are ignored upon spot-
market trading and the trading outcome might be infeasible with respect to all physical and
technical transmission constraints. Lastly, potential infeasibilities are resolved in a redispatch
stage, where the regulator modifies the production of certain electricity suppliers such that
the modified quantities can be transported through the, possibly expanded, transmission
network. The overall timing and structure of this trilevel problem is depicted in Figure 1.
It is an extension of the model discussed in [1] and captures the main aspects of electricity
trade in Germany.

The overall problem is an extremely challenging multilevel problem as it is often the case in
energy market design optimization [2]. Our model is made up of three interconnected levels.
The first level contains a network design as well as a graph partitioning (with additional
connectivity constraints) problem and is modeled as a mixed-integer quadratic optimization
problem (MIQP). The second level is again an MIQP that models spot-market interaction,
which is constrained by the mixed-integer decisions of the first level. Finally, the third level
is also an MIQP modeling a DC power flow problem with a welfare objective. It depends on
the integer network design decisions of the first level.

From a mathematical point of view, the structure of the problem is given as in Figure 2.
In general, and despite the recent algorithmic advances for solving bilevel problems like in [3],
such a quadratic mixed-integer trilevel problem is not tractable. Fortunately, our model
contains some specific structure that can be exploited in different algorithmic ways: All lower
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max total social welfare (regulator)

s.t. network design

graph partitioning with connectivity constraints

max profits (competitive firms)

s.t. generation capacity investment,

production & demand constraints,

Kirchhoff’s 1st law (zonal),

flow restrictions (inter-zonal)

min redispatch costs (TSO)

s.t. production & demand constraints,

lossless DC power flow constraints

Figure 1: Structure of the trilevel market model

max ψ1(W2,W3, X1)

s.t. (W1, X1) ∈ Ω1

max ψ2(W2)

s.t. (W2, X1) ∈ Ω2

min ψ3(W2,W3)

s.t. (W2,W3, X1) ∈ Ω3

Figure 2: Mathematical structure of the trilevel market model

level problems only depend on the decisions of the upper levels except for the first level’s
objective function that couples all three levels.

We present two different solutions approaches that both yield globally optimal solutions
of the trilevel model. First, we prove that the given trilevel model can be reformulated as
an equivalent bilevel problem. This bilevel problem consists of two MIQP levels, where the
second level integers all are genuine first-level variables. Thus, a standard KKT reformulation
approach can be applied and we further present dual bound tightening techniques that yield
improved QP relaxations of the underlying single-level MIQP. Second, we present a problem-
tailored Benders decomposition approach that also exploits the above mentioned specific
structure of the problem. We derive Benders optimality cuts, which are then used to prove
the overall correctness of the method.

Finally, we compare the performance and reliability of both algorithmic approaches and
show that the problem-tailored Benders decomposition clearly outperforms the KKT refor-
mulation technique. The Benders decomposition approach is then used for solving the trilevel
model for instances of the German electricity market and we draw some conclusions regarding
the German electricity market design.
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Abstract We study equilibria in traffic networks and in power system networks with storage
in the presence of logic constraints. These constraints consist of binary variables that are
added to complementarity-based equilibrium models. Although these models have been thor-
oughly studied, the addition of logic constraints can provide additional benefits for practical
applications. We demonstrate that logic constraints can render classical equilibrium models
more realistic by allowing the inclusion of useful features such as equity in network flows
or threshold events. Specifically, for the traffic equilibrium problem, we show how logic con-
straints can introduce some equity in the assignment of traffic when more than one equilibrium
exists. For power system networks, we show that the presence of a storage operator acting
as a service provider will not only support the operation of a power grid, but will also help
stabilize the price of electricity and avoid the well-documented price-shifting effect. Unlike
previous works, our model considers the storage operator as a service provider rather than
a competitor to the producers. We also consider the minimum power output of production.
We present results illustrating the expanded capabilities and insights provided by these new
paradigms.

Keywords: Mixed linear complementarity problems, mixed integer linear optimization,
traffic equilibrium, energy storage, power markets.
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Léonard von Niederhäusern∗
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Abstract The energy domain faces multiple challenges, with economical, ecological and
political interests at stake. To ensure the supply-demand balance, the solution originally
consisted in fitting the production to the demand. However, alongside the rise of the smart-
grid paradigm and the increasing importance of distributed generation, a new technique
appeared : demand-side management (DSM), which consists in fitting the demand to the
production. One of the tools to achieve DSM is time-of-use pricing : according to the time
of consumption, the electricity consumers will be charged differently.

Our model considers four types of actors. At the upper level, an electricity furnisher
sells the energy it produces/buys on the spot market. At an intermediary level, two types of
actors buy energy to the furnisher for consumption : so called local agents use the bought
energy to power their own devices (and thus decide on their consumption schedule), whereas
aggregators transmit the energy they buy to end-users with whom they are in contract. These
end-users constitute the third level of our model. The interaction between aggregators and
the corresponding end-users consist in rewards offered by the aggregator to its end-users to
incur load shifting, as suggested in [1]. Furthermore, our model offers the possibility for actors
of the second level to exchange energy among themselves.

Since bilevel programming is already difficult to solve in general, solving a tri-level program
requires particularly careful handling. The first step of the resolution consists in reducing the
tri-level model to a bi-level one. This is achieved thanks to an explicit formula for the
end-users’ programs. Then a characterization of the Nash equilibrium among the actors of
the intermediary level leads to two possible reformulations : one for the optimistic case, and
another one for a ”semi-optimistic” (or ”semi-pessimistic”) case, that might be more realistic.
These two reformulations allow a quick and efficient resolution with commercial solvers. To
illustrate this, we conclude our talk with numerical results.

Keywords: tri-level programming, demand side management, energy markets
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Abstract The classical Unit Commitment problem (UC) can be essentially described as
the problem of establishing the energy output of a set of generation units over a time hori-
zon, in order to satisfy a demand for energy, while minimizing the cost of generation and
respecting technological restrictions of the units (e.g., minimum on/off times, ramp up/down
constraints). The UC is typically modelled as a (large scale) mixed integer program and its
deterministic version, namely the version not considering the presence of uncertain data, has
been object of wide theoretical and applied studies over the years.

Traditional (deterministic) models for the UC assume that the net demand for each period
is perfectly known in advance, or in more recent and more realistic approaches, that a set of
possible demand scenarios is known (leading to stochastic or robust optimization problems).

However, in practice, the demand is dictated by the amounts that can be sold by the
producer at given prices on the day-ahead market. One difficulty therefore arises if the
optimal production dictated by the optimal solution to the UC problem cannot be sold at
the producer’s desired price on the market, leading to a possible loss. Another strategy could
be to bid for additional quantities at a higher price to increase profit, but that could lead to
infeasibilities in the production plan.

Our aim is to model and solve the UC problem with a second level of decisions ensuring
that the produced quantities are cleared at market equilibrium. In their simplest form,
market equilibrium constraints are equivalent to the first-order optimality conditions of a
linear program. The UC in contrast is usually a mixed-integer nonlinear program (MINLP),
that is linearized and solved with traditional Mixed Integer (linear) Programming (MIP)
solvers. Taking a similar approach, we are faced to a bilevel optimization problem where the
first level is a MIP and the second level linear.

In this talk, as a first approach to the problem, we assume that demand curves and offers
of competitors in the market are known to the operator. This is a very strong and unrealistic
hypothesis, but necessary to develop a first model. Following the classical approach for these
models, we present the transformation of the problem into a single-level program by rewriting

1



and linearizing the first-order optimality conditions of the second level. Then we present some
preliminary results on the performance of MIP solvers on this model. Our future research
will focus on strengthening the model using its structure to include new valid inequalities
or to propose alternative extended formulations, and then study a stochastic version of the
problem where demand curves are uncertain.

Keywords: Unit commitment, market equilibrium, day-ahead market, bilevel optimiza-
tion
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Abstract
In general, bilevel programs are a mathematical challenging class of problems. In linear

bilevel programs (BLPs), all decision variables are continuous, upper-level and lower-level
objective functions and constraints are linear. Jeroslow [5] proved that even BLPs are NP-
hard, i.e., there is no hope of building a polynomial time algorithm to solve a BLP if NP 6= P
(a highly likely event).

In this work we analyse BLPs where the lower level is modelled as a continuous knapsack
problem. In particular, first the leader makes his/her decision and fixes the values of his/her
variables, and afterwards the follower reacts by solving a continuous knapsack problem. The
follower’s knapsack depends on the leader’s strategy. To start, we analyse the case in which
the leader can decide the fraction of each item available for the follower and the leader aims
to minimize the total value of the items packed by the follower. This BLP is based on the
binary BLP tackled in [4] and [2]. This can be formulated as follows:

min
(x,y)∈[0,1]n×[0,1]n

n∑
i=1

piyi (1a)

subject to
n∑

i=1

vixi ≤ Cu (1b)

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑
i=1

piyi s.t.

n∑
i=1

wiyi ≤ Cl and (1c)

yi ≤ 1− xi for 1 ≤ i ≤ n. (1d)

We will also extend our study to more general formulations of the leader’s objective
function. Furthermore, we will discuss how to adapt our approach for the case in which the
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leader decides the follower’s knapsack capacity, instead of interdicting items. The latter case
is motivated by the binary bilevel knapsack programs studied in [3], [6] and [1].

Through this work, we assume that the leader has perfect knowledge of the follower’s sce-
nario (objective function and constraints) and also of the follower’s behaviour. Furthermore,
we assume that the follower can fully observe the leader’s action. In order to have a bilevel
program, the leader’s objective function or constraints must depend on the follower’s decision.
In our work, the leader’s objective function takes the follower’s reaction into account. We
remark that for Problem (1) there is no need to consider the optimistic and pessimistic cases.

In order to solve Problem (1), we apply a inverse optimization approach. To that end,
we make use of the well-known result [7] for the computational of optimal solutions to a
continuous knapsack problem. This leads to the conclusion that it is sufficient to determine
the follower’s item that in the optimal solution is critical. We prove that this can be done in
polynomial time. Furthermore, we highlight how our algorithmic idea can be extend to more
general models.

Keywords: Bilevel programming, Continuous knapsack problem, Polynomial time, In-
verse optimization
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Abstract Considering the standard optimistic bilevel optimization problem, there are two
main approaches to reformulate it as a single-level optimization problem. On the one hand,
we have the KKT (i.e., Karush-Kuhn-Tucker) refomulation, strongly connected to the class
of mathematical programs with equilibrium (or complementarity) constraints (MPECs or
MPCCs for short). We will not be pursuing this approach in this talk, but instead, we will
focus our attention on lower-level value function (LLVF) reformulation, which is typically
nondifferentiable. Also, even if all the functions involved in the problem are fully convex, the
feasible set is still nonconvex. A number of publications on solution algorithms for bilevel
optimization problems based on the LLVF reformulation or a closely related transformation
have been published recently, including global optimization techniques and local optimization-
types. The aim of the work to be presented at this workshop is to compute stationary
points for the optimistic bilevel optimization while using the LLVF reformulation; precisely,
we compute stationary points which can be locally optimal under suitable conditions, also
discussed. But unlike in some previous works, our approach is based on techniques which
allow us to avoid to directly compute the value function. The contribution of the work to be
presented, cf. [2] and [3], is five-fold:

1. To develop a tractable Newton method to solve the aforementioned LLVF reformulation,
we first introduce a new stationarity concept and established useful relationships with
known ones.

2. For the first time in the literature, we develop second order sufficient optimality condi-
tions for bilevel optimization based on the LLVF reformulation.

3. We then construct a Newton method with corresponding convergence results, which are
based in part on the condition that the Hessian matrix of the Lagrangian function of
the upper-level player be larger than that of the lower-level player on a certain cone of
feasible directions.

4. More importantly, our method converges on all the nonlinear problems in BOLIB [1];
i.e.; 126 problems in total. Also, for 117 for which a true solution is known or at least
there is a best known solution, we either achieve this value or a better one. It might
be useful to recall that no method designed for nonlinear bilevel optimization has been
tested on such a number problems.
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5. Since a parameter λ was introduced by Ye and Zhu in 1995 in the solution process of
the LLVF reformulation via the partial calmness concept, no experimental study has
been done to illustrate how it can be selected. We provide a benchmark study in this
paper on the selection of λ.

Keywords: Bilevel optimization, Newton method
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Abstract This work addresses quadratic bilevel optimization problems in their optimistic
statement. The reduction of the bilevel problem to a series of nonconvex mathematical opti-
mization problems, together with the specialized Global Search Theory, is used for developing
methods of local and global searches to find optimistic solutions. Numerical testing of the
method on specially constructed instances demonstrated the efficiency of the approach.

Keywords: quadratic bilevel optimization, optimistic solution, KKT-approach, penalty
approach, global search theory, computational simulation

Consider the following quadratic-quadratic problem of bilevel optimization in its optimistic
statement. In this case, according to the theory (see [2] and references in it), at the upper
level we perform the minimization with respect to the variables of both levels which are in
cooperation:

F (x, y) :=
1

2
〈x,Cx〉+ 〈c, x〉+

1

2
〈y,Dy〉+ 〈d, y〉 ↓ min

x,y
,

x ∈ X := {x ∈ IRm|Ax ≤ b},
y ∈ Y∗(x) := Arg min

y
{1

2
〈y,D1y〉+ 〈d1, y〉+ 〈x,Qy〉| y ∈ Y (x)},

Y (x)
4
={y ∈ IRn|A1x+B1y ≤ b1},


(QBP)

where A ∈ IRp×m, A1 ∈ IRq×m, B1 ∈ IRq×n, C ∈ IRm×m, D,D1 ∈ IRn×n, Q ∈ IRm×n, c ∈ IRm,
d, d1 ∈ IRn, b ∈ IRp, b1 ∈ IRq. Additionally, C = CT ≥ 0, D = DT ≥ 0, D1 = DT

1 ≥ 0.
According to the well known KKT-approach and penalty approach we can reduce Problem

(QBP) to the following σ-parametrized nonconvex problem with a convex feasible set [2]:

Φ(x, y, v) :=
1

2
〈x,Cx〉+ 〈c, x〉+

1

2
〈y,Dy〉+ 〈d, y〉+

+σ 〈v, b1 −A1x−B1y〉 ↓ min
x,y,v

, (x, y, v) ∈ D,

 (DC(σ))

where σ > 0 is a penalty parameter, v is the vector of Lagrange multipliers for the lower level
problem and D := {(x, y, v) |Ax ≤ b, D1y + d1 + xQ+ vB1 = 0, v ≥ 0, A1x+B1y ≤ b1}.

Note that for a fixed σ problem (DC(σ)) has a bilinear structure and belongs to the class of
d.c. minimization problems [3] with a convex feasible set. It is easy to see that the objective
function of (DC(σ)) can be represented as a difference of two convex functions [3].

We will employ, for example, the following d.c. representation based on the known prop-
erty of a scalar product:

Φ(x, y, v) = g(x, y, v)− h(x, y, v), (1)
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where g(x, y, v) =
1

2
〈x,Cx〉+〈c, x〉+1

2
〈y,Dy〉+〈d, y〉+σ〈b1, v〉+

σ

4
‖A1x− v‖2+

σ

4
‖B1y − v‖2,

h(x, y, v) =
σ

4
‖A1x+ v‖2 +

σ

4
‖B1y + v‖2. Note that the so-called basic nonconvexity in

Problem (DC(σ)) is provided by the function h (for more details, refer to [2], [3]).
So we can apply the Global Search Theory in d.c. minimization problems [3] to seek a

global solution to Problem (DC(σ)) with a fixed σ. Within that theory, it is first required
to construct a local search procedure that takes into consideration special features of the
problem under study.

It is noteworthy that nonconvexity in Problem (DC(σ)) is generated by only a bilinear
component 〈v, b1 −A1x−B1y〉. On the basis of this fact, we suggest to perform the local
search in Problem (DC(σ)) using the idea of the successive solution by different groups of
variables. Earlier this idea was successfully applied in solving bimatrix games, problems of
bilinear programming, and quadratic-linear bilevel problems (see [2], [3] and references in
them). Therefore, a specialized local search method appears.

Let there be given a starting point (x0, y0, v0).

V -procedure

Step 0. Set s := 1, vs := v0.

Step 1. Using a suitable quadratic programming method, find the
ρs
2

-solution (xs+1, ys+1)

to the problem

1

2
〈x,Cx〉+ 〈c, x〉+

1

2
〈y,Dy〉+ 〈d, y〉 − σ 〈vsA1, x〉 − σ 〈vsB1, y〉 ↓ min

x,y
,

Ax ≤ b, A1x+B1y ≤ b1, D1y + d1 + xQ+ vsB1 = 0.

 (QP(vs))

Step 2. Find the
ρs
2

-solution vs+1 to the following LP-problem:〈
b1 −A1x

s+1 −B1y
s+1, v

〉
↓ min

v
,

D1y
s+1 + d1 + xs+1Q+ vB1 = 0, v ≥ 0.

}
(LP(xs+1, ys+1))

Step 3. Set s := s+ 1 and move to Step 1.
We can prove the convergence theorem for the V -procedure to a critical point with special

properties [2], and we can introduce the stopping criteria to obtain an approximately critical
point. As well-known, the local search does not provide, in general, a global solution in
nonconvex problems of even moderate dimension [3]. Therefore, in what follows we discuss
the procedure of escaping critical points obtained during the local search. The procedure is
based on the Global Optimality Conditions (GOCs) developed by A.S. Strekalovsky for the
d.c. minimization problems [3], and has the following steps.

Suppose we know some approximately critical point (xk, yk, zk) in Problem (DC(σ)) with
the goal function value ζk := Φ(xk, yk, vk), obtaining by the V -procedure. Then we perform
the following chain of operations.

1) Choose a number γ ∈ [γ−, γ+], where γ− := inf(g,D), γ+ := sup(g,D). We can take,
for example, g(xk, yk, zk) as a starting value of the parameter γ [3].

2) Furtherfore, construct some finite approximation

Ak = {(zi, ui, wi) | h(zi, ui, wi) = γ − ζk, i = 1, ..., Nk}

for the level surface U(ζk) = {(x, y, v) | h(x, y, v) = γ − ζk} of the convex function h(·).
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3) For all approximation points Ak verify the inequality g(zi, ui, wi) ≤ γ, i = 1, 2, ..., Nk,
that follows from the global optimality conditions for Problem (DC(σ)) [3]. If this inequality
is satisfied, then the approximation point will be used in process. Otherwise, the point
(zi, ui, wi) is useless, because it is not able to improve the current point [3].

4) For each point (zi, ui, wi), i ∈ {1, 2, ..., Nk} chosen at Stage 3) find approximate solu-
tions (z̄i, ūi, w̄i) of the linearized (with respect to the basic nonconvexity) problems:

g(x, y, v)−
〈
∇h(zi, ui, wi), (x, y, v)

〉
↓ min

x,y,v
, (x, y, v) ∈ D. (PL(zi, ui, wi))

5) Using the points (z̄i, ūi, w̄i), perform an additional local search that delivers approxi-
mately critical points (x̂i, ŷi, v̂i), i ∈ {1, ..., N} in Problem (DC(σ)).

6) For the chosen i ∈ {1, . . . , Nk}, solve the level problem:

〈∇xh(z, u, w), x̂i − z〉+ 〈∇yh(z, u, w), ŷi − u〉+
+〈∇vh(z, u, w), v̂i − w〉 ↑ max

(z,u,w)
, h(z, u, w) = γ − ζk.

}
(Ui)

Note that definition for h(·) makes it possible to solve Problem (Ui) analytically. Let
(zi0, u

i
0, w

i
0) be the approximate solution to this problem.

7) If for some j ∈ {1, . . . , Nk} the following inequality holds

g(x̂j , ŷj , v̂j)− γ < 〈∇xh(zj0, u
j
0, w

j
0), x̂

j − zj0〉+
+〈∇yh(zj0, u

j
0, w

j
0), ŷ

j − uj0〉+ 〈∇vh(zj0, u
j
0, w

j
0), v̂

j − wj
0〉,

then, due to convexity of h(·), we obtain

γ − h(zj0, u
j
0, w

j
0) = ζk = Φ(xk, yk, vk) > Φ(x̂j , ŷj , v̂j).

Thus, we constructed the point (x̂j , ŷj , v̂j) ∈ D, which is better than (xk, yk, vk). If we failed
to improve the value of ζk using all approximation points Ak, then we have to continue the
one-dimensional search with respect to γ on the segment [γ−, γ+].

As a result, taking into account the features of Problem (DC(σ)) and basing on the stages
of the global search 1)-7), we have constructed and implemented the Global Search Algorithm
(GSA) in the quadratic bilevel problems.

Testing the GSA we performed by using the special method for generation of bilevel test
cases proposed in [1]. The idea of such generation is based on constructing bilevel prob-
lems of an arbitrary dimension with the help of the so-called kernel problems, which are
one-dimensional bilevel problems with known local and global solutions. The computational
simulation shows the efficiency of developed approach to quadratic bilevel optimization prob-
lems of high dimension.
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Abstract The computing of equilibria in leader-follower (or Stackelberg) games maximiz-
ing a certain utility function (such as the social welfare) is a classical application of bilevel
programming. In this area, the (search) problem of computing a leader-follower equilibrium
has been widely investigated in the scientific literature in, almost exclusively, the single-
follower setting [vSZ10]. LFGs encompass a broad array of real-world games. A promi-
nent example is that one of security games, where a defender, acting as a leader, is tasked
to allocate scarce resources to protect valuable targets from an attacker, acting as a fol-
lower [APS+11, KJT+09, PPM+08]. Besides the security domain, applications can be found
in, among others, interdiction games [CCLW16, MMO+17], toll-setting problems [LV16], and
network routing [ACCG13].

Although the optimistic and pessimistic versions of the problem, i.e., those where the single
follower breaks any ties among multiple equilibria either in favor or against the leader, are
solved with different methodologies, both cases allow for efficient, polynomial-time algorithms
based on linear programming. The situation is quite different when multiple followers are
present, a case in which results are only sporadic and strictly depend on the nature of the
followers’ game.

We investigate, in this talk, the setting of normal-form games with a single leader and
multiple followers who, after observing the leader’s commitment to a mixed-strategy, play a
Nash equilibrium in the resulting game. The corresponding search problem is, as we show,
not in Poly-APX unless P = NP both in the optimistic and pessimistic versions. In particular,
exact algorithms are known only for the optimistic case.

We focus, here, on the case where the followers play pure strategies—a restriction that
applies to a number of real-world scenarios—under the assumption of pessimism (as we show,
the optimistic version of the problem can be straightforwardly solved in polynomial time).
After casting this search problem as a pessimistic bilevel programming problem, we show that,
with two followers, the problem is NP-hard and, with three or more followers, it is not in Poly-
APX unless P = NP. This last result matches the inapproximability result which holds for
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the unrestricted case (where both leader and followers are allowed to play a mixed strategy)
and shows that, differently from what happens in the optimistic version, hardness in the
pessimistic problem is not due to the adoption of mixed strategies.

We then show that the problem admits, in the general case, a supremum but not a maxi-
mum (as it is often the case of pessimistic bilevel programming problems). By relying on a du-
ality argument, we construct an exact single-level mathematical programming reformulation
of the (pessimistic) problem, calling for the maximization of a nonconcave quadratic function
over an unbounded nonconvex feasible region, the latter defined by linear and quadratic con-
straints. We show that, in the general case, this formulation admits optimal solutions over
the extended reals but not over the reals (i.e., with some variables taking value +∞) and, to
mitigate the fact that, due to this, state-of-the-art solvers would not be capable of solving
it to optimality, we introduce a restricted version in which all the variables are (artificially)
bounded.

We propose an exact ad hoc algorithm for the (pessimistic) problem capable of solving it
to optimality without restrictions—we also embed the algorithm within a branch-and-bound
scheme capable of computing the supremum of the problem and, for cases where there is no
leader’s strategy where such value is attained (i.e., for the cases where the problem admits a
supremum but not a maximum), also an α-approximate strategy where α > 0 is any additive
loss.

We conclude by evaluating the scalability of our algorithms via computational experiments
on a well-established testbed of game instances.1

Keywords: leader-follower (Stackelberg) games, equilibria computation, pessimistic bilevel
programming
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Abstract Recently cloud services have had a remarkable boom in real life. However, there
are not many mathematical programming models yet that could help us analyze situations
related to this topic. This is the reason that motivated us to study a situation in which it
is necessary to set prices and decide the quantity that will be available for the service but
without losing sight of customer satisfaction. The latter is measured by the quality of the
service taking into account congestion functions. To model this problem, we propose a bi-level
programming model with one leader and one follower. A global cost function regarding all the
customers is considered at this stage of the research for optimizing the lower level problem.
We propose an exact algorithm based on listing all the possible follower decisions for a fixed
leader’s one. Numerical experimentation conducted over a set of randomly created instances
shows the convenience to use the proposed algorithm for solving this bi-level problem

Keywords: Cloud Computing, Bi-Level Programming, Quality of Service

1 Introduction

Cloud Computers provide on-demand resources and services over a network, with two differ-
ent but related types of clouds, those that provide computing instances on demand and those
that provide computing capacity on demand [1]. Both use similar machines, but the first is
designed to scale out by providing additional computing instances, whereas the second is de-
signed to support data -or compute- intensive applications via scaling capacity. According to
[1], the current interest in focusing on cloud computing is due to three important differences:
(i) Scale, some companies that rely on cloud computing have infrastructures that scale over
several data centers, (ii) Simplicity, prior to cloud-based computing services, writing code for
high performance and distributed computing was relatively complicated and usually required
working with grid-based services, developing explicit code, and employing other specialized
methods, and (iii) Pricing, cloud computing is often offered with a pricing model that lets you
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pay as you go and for just the services that you need. Analyzing the third characteristic, in
[2] are studied the reasons why a customer may rent software in preference to buying it. The
reasons are: (i) the software is for use in a short-term project, (ii) the customer may simply
want to gain experience of using the software, (iii) the customer wants to test and evaluate
the usability of the software, or (iv) the customer wants to avoid negative network externality.
And it can be proved that these reasons are true by watching how the cloud services have
gradually gained popularity in the last years.

Now, with a widely known and increasingly popular service, and focusing on the clouds
providing computing instances on demand, we aim to set a price for it, and it is important
to know the most common pricing scheme (pay as you go) employing that a unit of service
is charged at a fixed price per unit of time is what we are aiming to find. But, is it better
to establish a fixed price for a service rather than a spot price? Looking for similar services
we found that there would always be unused resources in the virtual capacity of the cloud.
Based on the ideas of establishing spot prices with the aim of minimizing the disutilities and
maximizing the revenue presented in [3], our problem takes place. In a highly competent
market, such as cloud servers, the customers’ demand is closely related with the quality of
the service (QoS), which is a very important feature in our case study and it is commonly
ignored in other study cases.

2 Problem Statement

In the modeled situation we consider a company which tries to set a pricing scheme for its
available resource, aiming to maximize its income. The company must take into account that
if its resource is used by the customers, a delay will immediately affect the performance of
the service. At the same time, customers attempt to minimize the global cost based on their
consumption necessities and the company’s pricing scheme.

Based on this idea, we propose a mathematical bi-level programming model which in-
volves two decision levels. The upper level corresponds to the cloud company (leader) and
the lower level associated with the customers (followers). By considering a leader’s objec-
tive function aiming to maximize the profit, we are seeking to set a pricing policy, in which
the leader must decide that price for different capacity levels of their resource in each time
period. This leads to having an objective function represented by the total income minus a
function that will show the strong link between demand and quality of service. The latter
being translated into money by a delay factor which is increased according to the number of
customers using the same service in the same period of time. It is convenient to remark that
our function is bounded by the maximum price that a customer is willing to pay for the service.

For the followers, who pursue to minimize their global cost (which is simply identified as
the sum of the price fixed in each period of time, multiplied by the amount contracted in that
period) and based on the price policy set by the leader, they must decide the most convenient
periods of time to hire the service and the amount they want to use in each period, where it
must be assured that their global demand is fully covered and that they are being completely
satisfied with just one contract per period of time.
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3 Current Work

The exact method that we propose is based on [3]. The idea is to reflect the importance
of decreasing the consumption peaks of the customers at each period of time, which will
indirectly help us to improve the performance of the service by not having periods of time
with overload. To achieve this, customers are being moved by the price, where based on each
customer demand, the proposed algorithm will pre-compute all the set of possible solutions (a
possible solution must take into consideration that a job may not be stopped and restarted in
non-consecutive periods), and the follower must decide which set that satisfies its preferences
also gives him the best deal.
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Abstract In a modern day world, where new technologies allow for complex decision-making
processes, a retailing company must implement a product pricing framework, in order to
remain competitive. In the present work, we analyse one specific problem in product pricing
under a model of single-minded customer behaviour, determined by a bundle and a budget.
A bundle is the subset of products, a given customer wants to purchase and is willing to pay
at most his budget for. We define the total price of a bundle to be the sum of all prices of
the products inside. The client’s single-minded behaviour can be described as binary decision
process. The bundle is purchased if and only if the total price is less than the budget. The
objective of the company is to maximise its total profits. This problem is known under
Single-Minded Bundle Pricing Problem (SMBPP) and has been introduced only recently in
the literature of algorithmic pricing. In the scope of this work, we assume that the supply is
unlimited, which would be an adequate assumption for digital goods and goods that can be
restocked in negligible time. We also assume that both bundle and budget of the clients are
part of the input. This eliminates the need to consider market competitors, as the budget
can represent the price a customer would have to pay for the same products, but buying from
a competitor. Assuming the bundles are known in advance is also non-restrictive, especially
since in common situations they are predefined by the optimising company.

After a brief literature review on product pricing, we noted that most of the research on
the SMBPP is dedicated to complexity results and approximability. We therefore contribute
to a missing piece of literature of exact methods given by the resolution of mathematical
programs. At first we propose a very intuitive approach to formulate the problem as a bi-
level program using only non-negative price variables and the binary buying decision of each
client. And show its equivalence to a single-level mixed-integer non-linear program (MINLP).
The non-linearity arises from naturally appearing product terms of price variables and buying
decisions. Applying the classical techniques of McCormick, we linearise this formulation in
two different ways to obtain mixed-integer linear programs (MILP) that can be solved exactly
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by using branch-and-bound methods. A first formulation is obtained by replacing the product
of the total bundle price and the corresponding client’s buying decision. A second model, on
the other hand, replaces the product of individual products and buying decisions.

Referring to a result of [1], we are able to show that the latter has the tightest continuous
relaxation bound in the family of convex reformulations of the initial non-linear model. We
link both MILP and establish their hierarchy. In our models, it is not hard to observe that in
an optimal solution every client will purchase automatically if able to do so. This allows us
to define dominating polytopes in the respective variable spaces over which we can maximise
the same objective functions to obtain an equivalent optimal solution. We will show that
in that case the convex hull of mixed-integer solutions has full dimension and determine the
facet-defining constraints.

In an interest to strengthen the above formulations obtained in the Master’s thesis [2],
we develop an adapted RLT-procedure to extract additional information from the initial non-
linear model. We obtain a final formulation which is a compact extension of the previously
strongest model.

Finally, we support our theoretical results with computational experiments comparing the
quality of all formulations and conclude on future research to be carried out on exact methods
for the SMBPP.

Keywords: Product Pricing, Mixed-integer linear programming, Bundles
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Abstract Pricing optimization problems aim at determining the prices of a series of products
in order to maximize the revenue of a company. Setting a low price can lead to a loss of income
if clients were willing to pay a higher price, but it can also make the product available to
a greater amount of customers; on the contrary, a high price can generate greater revenue,
but customers may not purchase it if it is too high. Therefore, a pricing problem is a bilevel
program, in other words, has a hierarchical structure with a first optimization problem given
by the company, which aims at maximizing its profit, and a subset of the constraints that
force the solution to be optimal to another optimization problem, which is minimizing the
customers’ purchasing cost.

Unit-demand customers are customers interested in several products which intend to pur-
chase at most one of them according to a selection rule. These customers were first introduced
by [1]. In our problem, their purchase decision is modelled by means of a budget, since they
will only buy a product provided that they can afford it. The Rank Pricing Problem arises
when the selection rule of the customers depends on their preferences, that is, when customers
rank the items and purchase the highest-ranked one which fits their budget. This rank-buying
objective was introduced by Rusmevichientong et al. in [2], where they show that the prob-
lem is NP-complete in the strong sense and introduce a heuristic approximation algorithm
together with posterior performance bounds.

The Rank Pricing Problem is introduced as a bilevel problem, and an analysis of its
properties leads us to develop two mixed-integer single level formulations to tackle it. Valid
inequalities are proposed taking advantage of the fact that a subset of its constraints consti-
tutes a special case of the Set Packing Problem, and others are presented as a result of an
analysis of its structure. A computational study is also included.

Keywords: Bilevel Programming, Rank Pricing Problem, Mixed Integer Programming
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Abstract Revenue management aims to sell the right product to the right customer at the
right time and for the right price as explained in [4]. The overall problem is too complex and
has been split into sub problems.

Generally, the first sub problem is to forecast the customers’demand. The idea is to benefit
from data or/and knowledge to best suit an established choice behavior model. Independent,
multinomial logit and preference list are the most common demand behavior model. This
forecast accuracy is crucial because it is used by many other sub problems such as pricing,
network planning or scheduling.

Among all the sub problems of revenue management, we focus on the inventory optimiza-
tion sub problem. Its role is to return a control of products availability during the reservation
period in order to maximize the revenue of the company. The latest forecast demand allows
us to formulate this problem as an exact dynamic program [2]. However, it is too rapidly not
tractable because of the number of states generated. This is why many approximations have
been proposed since then and are almost always also forecast based. In order to tackle the
complexity, they are often dedicated to a specific choice behavior model and exploit methods
such as decomposition [3] and column generation [1].

In this presentation, we propose a new approximation for the inventory problem called
Buying Tree Program (BTP). It has the advantage to be independent from the choice behavior
model and is very effective thanks to a bi-level approach. Our approximation does not depend
on any choice behavior because it is built on an enumeration, resulting in a tree, of any
choice behavior buying paths. Rather than working with the combinatorial set of products
variables as usual, we use a time variable corresponding to the end of each product sales
over the reservation period. This enables us to split our problem in two parts. The first one
is to determine the order of products corresponding to the time of sales end also denoted
as product closing. Once this hierarchy of product closing is obtained we can more easily
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compute the duration of sales for each product. This two-level approach is modeled in one
mixed integer linear program which is combined with heuristic to be solved much faster.

Numerical experiments show very promising results in favor of our approximation. In
the three instances tested our BTP is at least equal to the expected revenues given by best
approximations but is solved in much less time. In the largest instance, our approximation
outperform the existing one by solving in less than two minutes whereas others necessitate
hours.

Keywords: Revenue management, Transportation, choice models
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Abstract Optimization approaches for investment selection and portfolio management rely
on centralized decisions about both budget allocation in different investment options and
portfolio composition within the different options. However, investors do not directly select
the portfolio composition, but only provide guidelines and requirements about risk control
and budget allocation, relying on financial intermediaries to build the portfolio of financial
securities. This results in a hierarchical investor-intermediary interaction about the overall
investment decisions.

In this work, a bi-level mixed-integer quadratic optimization problem is proposed for the
decentralized selection of three types of investments:

- a collection M of real options, with |M| = m and decision variables z = [z1, . . . , zm]>;

- a collectionN of financial options, with |N | = n and decision variables y = [y1, . . . , yn]>;

- a risk-free asset, associated with the decision variable x.

Real options (corresponding to the particular sectors in which the investor is operating)
have fixed lunching costs c1, . . . , cm that are defined as proportions of the available budget.
These costs are associated with rates of return B1, . . . , Bm that are specified within a given
period. Since B1, . . . , Bm are random quantities, their marginal expectations are denoted
as b1, . . . , bm, and their variance-covariance matrix as Q(z ∈ Rm×m. The latter comprises

the q
(z
ij covariances between Bi and Bj . In vector form, these elements are defined as c =

[c1, . . . , cm]>, B = [B1, . . . , Bm]> and b = [b1, . . . , bm]>.
Each financial option i ∈ N gives a return Ri, which is a random quantity with expectation

ri and their variance-covariance matrix Q(y ∈ Rn×n. The latter comprises the q
(z
ij covariances

between Ri and Rj . In vector form, these elements are defined as R = [R1, . . . , Rn]> and
r = [r1, . . . , rn]>.

An investor (acting as the leader) aims at maximizing a utility function by selecting the
optimal proportion of money invested in the risk-free asset, x, and real options, z. The
leader’s problem is

G(Θ) = min
y,x,z

J(y, x, z)

subj. to: (x, z) ∈ Λ and y ∈ ΨΘ(x, z)
(1)
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where Λ = {(x, z) ∈ [0, 1]×{0, 1}m | x+ c>z ≤ 1} is the set of feasible investor decisions (i.e.
verifying non-negativity, integrality and budget constraint) and ΨΘ : R × {0, 1}m → 2[0,1]n

is the solution set mapping of the financial intermediary problem for fixed decisions x and
z by the investor. The investor utility is based on the Markovich balance between expected
returns and risk [4]:

J(y, x, z) = αV
[
R>y + B>z

]
− (1− α)E

[
ρx+ R>y + B>z

]
= α

(
z>Q(zz + y>Q(yy

)
− (1− α)

(
ρx+ r>y + b>z

)
.

Based on this centralized decision, an intermediary (acting as the follower) builds the
portfolio of financial assets by maximizing its expected rate of returns subject to a specified
measures of risk. These measures can be implemented with constraints on either the variance,
the value-at-risk, or maximum drawdown [1][2], reflecting the presence of legal or contractual
requirements, as well as a specified degree of risk aversion.

The follower’s problem is

ΨΘ(x, z) = argmax
y

r>y

subj. to: x+ y>1 + c>z ≤ 1
ρx+ r>t y ≤ Θ t = 1 . . . T
y ≥ 0,

(2)

where rt = [r1t, . . . , rnt]
> is a realization of financial returns at period t and 1 denotes the

vector of all 1’s of appropriate dimension. For simplicity, by the vector inequality y ≥ 0, we
mean that the componentwise inequalities yi ≥ 0 holds for each i ∈ N .

In (2), the intermediary maximizes the benefits from the portfolio by selecting the amount
of money to invest in the risky assets depending on the budget (first constraint) and the
maximal drawdown limitation (second set of constraints). The latter is a linearly computable
risk control [3], which mirrors the decline from a historical peak in returns (i.e. the maximal
drawdown up to time t is the maximum pain period experienced by an investor between a
peak and subsequent valley over the history of prices), specifying both the time period for
the calculation and a lower bound for returns.

Single-level reformulation techniques have been applied to solve (1)-(2). In particular, we
analyze the computational impact of using a two alternative reformulation approaches:

- a KKT-based reformulation, which characterizes the intermediary optimality based on
a collection of complementary constraints;

- a strong-duality-based reformulation, which characterizes the intermediary optimality
based on a unique prima-dual equality constraint.

Despite the equivalence of both characterization in terms of the intermediary optimality,
we show that the linearization of the bi-linear terms in both reformulations give rise to
substantial variations in the computational effort. In particular, the linearization of the
KKT-based reformulation required the inclusion of a much larger number of binary variables
and combinatorial constraints.

For both cases, the use of a collection of valid-inequalities (derived from the constraint
structure of (1)-(2)) allowed speeding-up their resolution procedure, when large scale instances
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are taken into account. We show that the inclusion of such inequalities are capable of reducing
the CPU-time up to 70% for both model reformulations.

To assess the practical consequences of the decentralized portfolio selection, we conducted
computational experiments on large historical stock market data from the Center for Re-
search in Security Prices. This allow validating and comparing the the proposed bi-level
investment framework (and the resulting single-level reformulations), under different levels of
investor’s and intermediary’s risk aversion and control. The empirical tests revel the impact
of decentralization on the investment performance, and provide a comparative analysis of the
computational effort corresponding to the proposed solution approaches.

To the best of our knowledge, the proposed modeling strategy represents the first mathe-
matical programming contribution where financial intermediation is embedded into a classical
investment problem. This opens new possibilities for solving real-world large scale instances
of decentralized investment problems, even beyond the range of model specifications and
empirical applications considered in this paper. Specifically, the following lines for further
investigation can be taken into account:

- A decentralized global investment in multi-period settings where investment decisions
are dynamically taken.

- A decentralized global investment in multi-market settings where a variety of interme-
diaries operating in different markets can be selected.

- Incorporation of further linear and quadratic programming commutable risk constraints
at the intermediary’s level, as well as higher moments specification (e.g. tail events) of
investor’s risk aversion.

- Algorithmic improvements based on cutting plane approaches, as well as specialized
interior-point methods.

Keywords: Portfolio management, Financial intermediation, Bi-level optimization
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Abstract Among the most classical research problems in operations research and financial
theory we find portfolio optimization problems. Portfolio optimization is the process of choos-
ing the proportions of various assets to be held in a portfolio, in such a way as to make the
portfolio better than any other according to some criterion. Usually, the criterion combines,
directly or indirectly, considerations of the expected value of the portfolio’s rate of return as
well as of the return’s dispersion and possibly other measures of financial risk.

The classical model in this research area was originally proposed by Markowitz in 1952 [4].
This model has served as the basis for the progress of the modern portfolio financial theory.
Markowitz proposed as a measure of risk the standard deviation or variance, and as a measure
of the expected profit, the classical expected return. Whereas the original Markowitz model
is a quadratic programming problem, many efforts have been made to linearize the portfolio
optimization problem. Since Markowitz proposed his model, several other risk measures have
been considered, specially those that give rise to linear programming (LP) problems (MAD,
CVaR, etc.) [1].

Over time, portfolio optimization problems have become more realistic, incorporating real
life aspects, among them we highlight the transaction costs. Ignoring these practical issues
may result in inefficient portfolios [2], [3]. These transaction costs are the costs incurred by the
investors when buying and selling assets on the markets, that are charged by the brokers or the
financial institutions playing the role of intermediary. In the existing portfolio optimization
problems with transactions costs, these are assumed to be fixed or variable (dependent on
the amount invested in each security), but given. Nevertheless, these financial institutions
paying the role of the intermediary may also fix the transaction prices trying to maximize its
own profit, that is, they can also be considered optimizers in the problem.

We present a novel bilevel leader-follower portfolio selection model in which the bank has
to decide on the transaction costs for investing in some securities, maximizing its benefits, and
the investor has to choose his portfolio, minimizing the risk and ensuring a given expected
profit. In order to minimize the risk of the investor different risk measures can be considered.
This gives rise to general non linear bilevel problems in both levels. We model different bilevel
versions of the problem (cooperative model, bank-leader model, ...), determine some of their
properties, provide Mixed Integer Linear Programming formulations and Benders algorithms
for some cases and report some computational results.

Keywords: Portfolio Optimization, Transaction Costs, Bilevel Optimization
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Abstract In this paper, a bilevel programming model is proposed to study a problem of
market regulation by the Government applied to the petrochemical industry. The problem is
characterized by the state monopoly on the commercialization of inputs and the hierarchical
competition between the Government and private companies for the production of final com-
modities. Under these conditions, at the upper level, the Government may limit the output of
private companies and optimize their production of final commodities to minimize the differ-
ence between the supply and the demand for each product. On the other hand, at the lower
level, the maximization of the profit for private companies is aimed. For doing this, there are
two possibilities: (i) when there is a regulatory organism in private companies that distribute
the inputs between them, and (ii) when each company is independent from the others. In the
latter case, it is necessary to found the equilibrium between private companies. An algorithm
that is based on the exploration of vertices of the lower level’s dual problem is proposed to
solve the proposed problem. Also, a procedure to find a set of optimal solutions is presented.
Numerical experimentation is carried out using instances inspired in real life, in particular,
related with the petrochemical industry.

Keywords: Bilevel Programming, Market Regulation, Mixed Market, Petrochemical In-
dustry

1 Introduction

Since the period known as “Stabilizer development” and until few years, in Mexico the Con-
stitution divided the petrochemical industry into two branches: basic petrochemical and
secondary petrochemical. The economic activities that transform the natural gas and oil in
raw material such as methane, ethane or naphtha belong to the basic petrochemical; and
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those activities that used these supplies to make oil derivates for other industries belong to
the secondary petrochemical. By law, the basic petrochemical is monopolized by the Mexican
government, whereas the secondary petrochemical is open to the market [1].

2 Problem Statement

The industrial structure described above has occurred in other countries and in other indus-
tries, according to specific historical, economic and political terms. The problem without
considering the national and historical particularities, is the following: the Government mo-
nopolizes the production and commercialization of the raw material of an industry, in which
the Government and the private companies compete in the manufacturing of the commodi-
ties. This situation implies a hierarchy of decision between the Government and the private
companies. To deal with the problem, we propose a bi-level programming model, in which the
Government performs as the leader and the private companies as the follower. The Govern-
ment decides first how much raw material will use to manufacture commodities, thus limiting
the manufacture of private companies. Besides, the Government and private companies de-
termine the production of each commodity.

A similar situation that has been studied in the literature is called as a mixed oligopoly,
which in its most classical case represents a market where at least one public company cohab-
its with one or more private firms[2]. Even considering a hierarchical relationship in decision
making, in the case of the models that use the Stackelberg games [3]. Our model differs
from that topic, because of the type of relationship between two industrial branches and the
monopoly of the Government of one branch, as well as in some economic assumptions and
the aim of the Government.

According to the economic theory, it is valid to assume that companies aim to maximize
their profits. The economic regulation tries to solve some problems related to market fail-
ures when the maximization of individual profits does not translate into the maximization of
social welfare. One of these issues occurs when the supply exceeds the demand for a com-
modity, which is a waste of resources; or when production is insufficient. For this reason, one
of the contributions of our model is bringing in that the objective of the Government is to
minimize the difference between the supply and demand, for each final commodity considered.

In some cases, the Government participation in the production yields some regulations
that limit competition in the industry. Therefore, it is necessary to introduce two extreme
cases. In the first case, which is the one we focus in, there is an organization that distributes
the raw material among private companies, with the objective of maximizing the net profit
of all private companies. In the second case, which we only analyze it analytically, there is no
option and it is necessary to achieve a balance between private companies for the purchase of
the raw material.

3 Proposed algorithm

To solve the resulting linear-linear bi-level programming model with continuous variables, we
propose an algorithm based on the dual problem associated with the lower level. We use a
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one-level relaxation of the original problem, which consists in omit the objective function of
the lower level. Since the dual problem of the lower level is bounded, it is possible to use the
equality between the optimal value of the primal and dual problem of the lower level and to
restrict these conditions to all the vertices of the polyhedron defined by the dual constraints.
Iteratively, the algorithm explores the vertices of the polyhedron, thus improving the values
of the objective function of the dual problem, until a stop criterion is met.

Owing to the characteristics of the problem is expected to find multiple optima. Once a
sufficiently good solution is found, by the previous algorithm, the original bi-level model is
reformulated as a linear programming model, which preserves the restrictions of both levels.
The objective function of the upper level is replaced with the objective function of the lower
level, and an equality of the objective function of the upper level with the value of the
“sufficiently good” solution found previously is added. By doing this, solutions to the bi-level
problem are obtained equally “good” within the inducible region.

4 Current Work

Numerical experimentation is being conducted using instances inspired in a real Mexican case.
Some of the data are generated in a pseudo-random manner, but corresponding to the real
oil industry. Using the procedure for obtaining multiple optimal solutions, we intend to give
to the decision maker a wide range of solutions for selecting the one that is more suitable in
that particular moment.
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Abstract 
We consider a bilevel programming problem modeling the optimal toll assignment as applied to an abstract 

network of toll and free highways. A public governor or a private lease company run the toll roads and make 

decisions at the upper level when assigning the tolls with the aim of maximizing their profits. The lower level 

decision makers (highway users), however, search an equilibrium among them while trying to distribute their 

transportation flows along the routes that would minimize their total travel costs subject to the satisfied demand 

for their goods/passengers. Our model extends the previous ones by adding quadratic terms to the lower level 

costs thus reflecting the mutual traffic congestion on the roads. Moreover, as a new feature, the lower level 

quadratic costs aren’t separable anymore, i.e., they are functions of the total flow along the arc (highway). In 

order to solve the bilevel programming problem, a heuristic algorithm making use of the sensitivity analysis 

techniques for quadratic programs is developed. As a remedy against being stuck at a local maximum of the 

upper-level objective function, we modify the well-known “filled function” method which brings us to a vicinity 

of another local maximum point. A series of numerical experiments conducted on test models of small and 

medium size shows that the new algorithm is competitive enough. 

The previous century model of locating manufacturing enterprises as near as possible to the potential 

consumers has given way to others mainly due to the impressively rapid development of the modern 

transportation tools. Nowadays, producers aren’t restricted too much by the large distance from the 

markets and can compete mainly in the areas of technologies thus enhancing the sales volumes. 

During the first steps of the industrial revolution, the producing plants and factories used to be located 

not too far from the markets, since the goods movement was rather costly, taking a lot of time, and 

lacking security. With the development of the modern transportation systems, the producers are able 

to compete in front of the distant consumers as well, which promotes economies of scale by increasing 

sales volume.  

However, due to the newly appearing bothers about ecology, safe transportation of hazardous 

materials, the complexity of the modern distribution and supply chains, the logistics costs has grown 

astronomically. According to the recent IMF (International Monetary Fund) estimates, logistics 

expenditures are responsible on average for 12% of the gross national product (GNP), while scaling 

5% to 30% of the total costs at the enterprise level.  

Currently, in many countries, both governmental bodies and private companies participate in gross 

efforts aimed at the enlargement and improvement of the transportation network’s infrastructure and 

facilities in order to achieve the higher grade of involvement in the global economy. There are bodies 

engaged in the enhancement of transference and movement facilities, investment in new technologies 



bringing about better reliability and durability of highways and other transportation infrastructure 

objects. For instance, in Mexico, it is common that non-governmental (leasing) companies, non-

federal (state) structures, as well as various financial institutions (like banks, holdings, etc.), are 

contracted with the aim of picking up the toll payments from the highway users. 

The latter development taken into account, many companies and states have appended gross relevancy 

to the enlargement and modernization of the infrastructure to reach a better participation in the global 

economy. There exist bodies dealing with the improvement of communications and transference 

infrastructure, inventing new technologies in order to enhance the amends, excellence, and durability 

of the infrastructure. In Mexico, operations with new (private) highways are usually granted to non-

government enterprises, state governments, or financial institutions (banks, holdings, etc.), who 

assign the movement toll to pick up payments from the motorists.  

In the last ten years, it has been noticed that there is less heavy traffic under the concession model 

applied to govern these tolled highways. One of the efficient ways to elevate the use of toll highways 

is the tight control of the tolls (pass rates). Therefore, a natural question arises about the appropriate 

criteria to evaluate these rates.  

Since recently, it has become clear that certain flexibility in the assignment of tolls on the crucial 

highways attracts more vehicles to use them and thus relaxing the heavy traffic along the free roads. 

Hence, a natural question arises how to evaluate the appropriate tolls for each of the toll 

thoroughfares. In other words, the toll optimization problem (TOP) is a crucial element of an efficient 

management of the transportation infrastructure. 

Here, we consider the TOP as the problem of assigning optimal tolls to the arcs of a multi-commodity 

transportation network. The latter is usually stated as a bilevel mathematical program, in which the 

upper level is controlled by a leasing company (or a public administrator) who raises profits from the 

tolls assigned to (some) arcs of the network, while the lower level deals with an array of drivers 

(transportation companies) riding the cheapest paths. The problem then reads as follows: Find 

equilibrium among the toll values that provide high revenues being yet attractive enough to the users. 

The problem in question has been examined by many prominent researchers (see the references listed 

below). It suffices to mention only a few high-level authors who have dealt with the TOP. Indeed, 

Magnanti and Wong (1984) provided a comprehensive theoretical base for the decision makers both 

at the upper and lower levels of the problem making use of the integer programming techniques.  

Marcotte (1986) noticed that the network design problem (NDP) mainly deals with the optimal 

balance either of the transportation, investment, or maintenance costs of the networks subject to 

congestion. He also supposed that the NDP could be modeled as a multi-level mathematical program. 

Dempe and Starostina (2009) contributed to the solution of TOP by designing “fuzzy” algorithms. A 

bit earlier, Lohse and Dempe (2005) studied TOP based on the analysis of an optimization problem 

that is a kind of reverse to TOP. At the same time, Didi-Biha et al. (2006) developed an algorithm for 

calculation of lower and upper bounds in order to determine the maximum gain from the tolls on a 

subset of arcs of a network transporting various commodities.  

The bilevel programming offers a convenient framework modeling the toll optimization problem as 

it allows one to make use of the user’ behavior explicitly. In contrast to the previous works mentioned 

above, Labbé et al. (2000) handle TOP as a sequential game involving the owners of the highway 

network (the leaders) and the users (the followers) as the players, which follows exactly the structure 

of a bilevel program. Such a structure has also been examined by Brotcorne (1998) for the problem 



of fixing tariffs on load trucks running the highways. In the latter case, the leader is played by a group 

of competing companies, and their revenues are formed by the gross profits from the tolls, while the 

follower is a carrier who seeks to lower its travel expenditures, given the toll values dictated by the 

leader(s).  

A simple TOP was studied in Kalashnikov et al. (2011), where a motorway administrator (the leader) 

decides the tolls on a subset of arcs of the network, whereas the users (followers) seek the shortest 

paths (in generalized time units) connecting the origin and destination nodes for their goods. The aim 

of the leader in this setting is to maximize the toll revenue. The problem could be formulated as a 

combinatorial program comprising NP-hard tasks, such as the Traveling Salesman Problem (see, 

Labbé et al. (1998), for a reduction method). By means of the already known NP-hardness proofs, 

Roch et al. (2005) obtained new results concerning the computational complexity of some existing 

algorithms.  

Recently, Brotcorne et al. (2011) examined this problem under a bit different assumptions; namely, 

they permitted the network to be subsided; this is, they allowed the toll values to be unconstrained. 

The authors continued their work over the same problem later in Brotcorne et al. (2012) having 

brought up a tabu search algorithm, which helped them to infer that their heuristics did obtain better 

results than other combinatorial methods. Dempe and Zemkoho (2012) also explored the TOP and 

introduced its restatement founded on the optimal-value-function technique. This restatement is better 

than that making use of the Karush-Kuhn-Tucker (KKT) optimality conditions since the former 

accumulates the information about the congestion in the network. The authors deduced the optimality 

conditions appropriate for this restatement and studied some related theoretical properties of the latter. 

In the majority of the above-mentioned works, the TOP in question had linear lower level problems. 

The aim of the present paper is to develop algorithms making use of the allowable ranges to stay 

optimal (ARSO) and allowable ranges to stay basic (ARSB) deduced with the aid of sensitivity 

analysis applied to the lower level quadratic problem; cf., Boot (1963), Jansen (1997), Hadigheh et 

al. (2007). This efficient tool helps determine allowable variations of the coefficients of the objective 

function that do not ruin the optimality of a solution. Also, it makes one able to trace the variations 

in the optimal solution whenever the parameters get values beyond the ARSO or ARSB. This work 

has been motivated by the previous attempts described in Roch et al. (2005).  

Apart from making use of the allowable ranges, the proposed algorithm also exploits the techniques 

of the “filled functions”; cf., Renpu (1990), Wu et al. (2007), Wan et al. (2012). The latter is quite 

efficient when a local maximum has been run into. In that case, the “filled function” procedure allows 

us either to jump into a neighborhood of another local maximum, which can happen to be better or 

otherwise to conclude with the high probability that the best feasible optimal solution has been found. 

The stopping point is selected based upon certain tolerance criterion. 

The validity, robustness, and the efficiency of the proposed heuristics are confirmed by the results of 

numerical experiments with test examples used to compare the developed approach against the other 

well-known algorithms. 

The paper is arranged as follows: Section 2 provides the statement of the model together with the 

involved parameters. Namely, TOP can be analyzed as a leader-follower game that takes place on a 

multi-commodity network  defined by a set of origin-destination couples , a set of 

nodes , and a set of arcs . The latter is partitioned into the subset of toll arcs and the 

complementary subset  of toll-free arcs; here  and , thus yielding . 
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We endow each arc  with a fixed travel delay  and a congestion parameter ad . Also, there is 

an upper limit capacity  associated with each arc  in the network. Toll arcs  also involve 

a toll component  to be determined, which, for the sake of consistency, is also expressed in time 

units. Letting  denote the set of commodity flows, and  (respectively, ) the set of arcs 

having  as their head node (respectively, tail node), TOP can be formulated as a bilevel program: 
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Section 3 presents the reformulation of the toll optimization problem (TOP) as a linear-quadratic 
bilevel programming problem. In a bit more detail: we blend the main structure of the method 
described in Kalashnikov et al. (2011) with a following new idea. First, we determine the vector of 
“fastest increase” for the upper level objective function restricted to the toll variables. The “formal 
gradient” of this objective F function defined in (2) can be characterized by the present flows assigned 
to the toll arcs: 
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According to Kalashnikov et al. (2016) and Dempe et al. (2015), the lower level Nash equilibrium 
problem (5) can be equivalently replaced with the quadratic programming problem with the objective 
function equal to the sum of all followers’ objective functions: 
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Section 4 presents the theoretical background of the proposed algorithms while Section 5 deals with 

the algorithms’ description. In particular, the algorithm’s flow chart can be depicted as follows: 

 Fig. 1. The algorithm’s flow chart 

Figure 1 shows that first, the initial zero values assigned to the tolls. After solving the quadratic 

programming problem of the follower finding the flow in the arcs and yielding a value for the leader’s 

objective function, apply sensitivity analysis taking into account only toll-arc variables. Having listed 

the possible increases and decreases in the coefficients of the objective function and based on the 

formal “gradient” vector of the upper level objective function F we update active toll vector . 

When positive increments of t cannot be obtained, perform the “filled function” method. Once there 

is a new toll vector, go to Step 1 and close the loop. The algorithm stops when the “filled function” 

method fails to provide a better value for the leader’s objective function after several attempts in a 

row, which can mean that an approximate global optimum has been reached. The multi-commodity 

flow corresponding to the final toll values provides the optimal solution for the followers, too. 

In Section 6, the results of numerical experiments with several toll optimization test problems are 

presented. To apply the sensitivity analysis algorithm and the method of the “filled function” (FF), a 

PC Hewlett-Packard was used. The characteristics of the computer equipment used for the 

development and implementation of the algorithm are Intel (R) Atom (TM) CPU N455 with a speed 

2.00 GHz of 1.67 GB RAM memory. The coding algorithm was written in the MATLAB 

mathematical software in its version MATLAB R2017a. This software was used due to its linear 

programming tools found in the “Optimization Toolbox”. One of the functions used was quadprog 

because, in the case of unbounded capacity, i.e., for all in constraints (9), the lower level 

of the TOP can be separated without loss of generality into independent minimal cost flow problems, 

which are quadratic programming problems. 

Section 7 comprises conclusions and targets for future research. 
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Abstract
Demand forecasting in transportation is about the estimation of the number of passengers

aiming to travel on a specific origin-destination within a given time window. These forecasted
values are of great importance in a revenue management system. In railway industry, a precise
forecasted demand could remarkably improve the seats allocation and consequently, maximize
the firm’s revenue [1].

Instead of using a common econometric model to modelize the demand, we introduce a
comprehensive machine learning approach to simulate the behaviors of the customers. Incor-
porating these customers’ behaviours into an optimization program leads to a bilevel program
where the leader controls variables such as price and capacity, while customers react with the
goal of optimizing their utility over the leader’s offers.[2].

In this talk, we applied various machine learning algorithms and different preprocessing
techniques to predict the future bookings of customers in railway industries for two different
aggregation levels; a general high-level and a detailed and complex aggregation level.

A key step in the proposed approach is to optimally set all the hyper-parameters of the
algorithms such that we can obtain the highest possible accuracy while keeping our method
generalizable and stable while keeping an acceptable computing time.

Our results show that by using a greedy search in a well-defined stacked generalization
method, combined with proper preprocessing and post-processing techniques, we improve the
forecasts for both aggregation levels.

Keywords: demand forecasting, bilevel programming, machine learning, optimization

1



References

[1] Azadeh, Sh Sharif, Patrice Marcotte, and Gilles Savard, A non-parametric approach
to demand forecasting in revenue management, Computers & Operations Research.63
(2015): 23–31.

[2] Marcotte, Patrice, and Gilles Savard. A bilevel programming approach to optimal price
setting, Decision & Control in Management Science. Springer, Boston, MA, 2002. 97-
117.

2



Designing a road network with toll setting and

hazmat transportation

Stefano Nasini∗

Dept. of Economics and Quantitative Methods, IESEG School of Management, CNRS,
s.nasini@ieseg.fr

Francisco-López Ramos
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Abstract Network operators face problems such as traffic congestion and exposure of popu-
lation to risk of hazardous materials. To alleviate these problems, investments on new roads
are planned, and toll charging policies defined. In the literature, these practices are known as
the Network Design Problem (NDP) [1] and the Toll Setting Problem (TSP) [2], respectively.
The NDP refers to ordinary vehicles, and when hazmat vehicles are studied, instead, it is
known as the Hazmat Transportation Problem (HTP) [3].

Current trends of research, only integrate either the NDP and HTP or the TSP and HTP
and the NDP and TSP, but not all three together. However, it is important for both the
network operator and the vehicles traveling throughout this network. On the one hand, the
network operator should consider all factors in the investment on new roads, such as the
flow of ordinary and hazmat vehicles. On the other hand, vehicles can choose among more
alternative routes based not only on travel time but also on costs due to toll charging and
traffic congestion.

Our contribution proposes an innovative mathematical programming approach to simul-
taneously solve the NDP, TSP, and HTP. The integrated Network Design, Toll Setting and
Hazmat Transportation Problem (NTHP) can be defined as a leader-follower game that ma-
terializes on a multi-commodity network G = (V,K,N ,A).

Before presenting the mathematical programming formulation for the NTHP, the following
notation is introduced:

Sets:

N Set of nodes.
A Set of links between nodes (with A ⊆ N ×N )
AN Set potential links between nodes (with AN ⊆ A)
K Set of origin-destination pairs (with K ⊆ N ×N ).
V Set of vehicle types.

Exogenous parameters:

ca Cost of constructing new link a ∈ AN .
na Number of people exposed to hazmat risk on link a ∈ A.
qa Maximum number of vehicles going through link a ∈ A.
gv,k Number of vehicles traveling from origin o(k) ∈ N to destination d(k) ∈ N .
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Operator’s decision variables:

tva Unitary toll at each link a ∈ A and for each vehicles type v ∈ V.
ya Binary decision concerning the construction of new link a ∈ AN .

Vehicles’s decision variables:

xv,ka Number of vehicles of type v ∈ V, with trajectory k ∈ K, going through a ∈ A.

Set K is partitioned into subsets Kv, for each v ∈ V : Kv 6= ∅, accounting for the commodi-
ties (vehicles) classified according to their type (i.e., 0-regular and 1-hazmat). Additionally,
a set A is decomposed into toll links subset AT and toll-free links subset AF . Beside, we
introduce the vector notation t = [tva : a ∈ A, v ∈ V] ∈ R|A||V|, y = [ya : a ∈ A] ∈ {0, 1}|A|
and t = [xv,ka : a ∈ A, v ∈ V, k ∈ K] ∈ R|A||V||K|, which will be used in the rest of the paper.
Finally, the operator’s and vehicles’ payoffs are defined to capture their respective revenue
and cost structures as follows:

Operator’s payoff: PO

(
t,y,x

)
=
∑
a∈AT

∑
v∈V

tva
∑
k∈Kv

xv,ka −
∑
a∈AN

caya −HO

∑
a∈A

na

∑
k∈K1

x1,ka

Vehicles’s payoff: PV

(
t,y,x

)
= −

∑
a∈AT

∑
v∈V

tva
∑
k∈Kv

xv,ka −HV

∑
a∈A

ua(xv,ka : v ∈ V, k ∈ K)

The operator’s payoff is the total profit consisting of the revenue from toll value (tva, for

a ∈ A, v ∈ V) multiplied by commodity flows (xv,ka , for a ∈ A, v ∈ V, k ∈ K), minus the two
sources of cost: (i) the cost associated with the construction of new links (yaca, for a ∈ AN )
and (ii) the cost related to risk exposure to hazmat transportation. This second cost is a
social cost that a benevolent operator must internalize. This is compute as na (the size of
the population in the neighborhood of link a), and HO renders the market value of such risk.

The vehicles payoff is the negative of its transportation cost, which consists of the toll
charges established by the operator (first term) and the time cost defined as a convex function

of the amount of flow (second term), ua(xv,ka : v ∈ V, k ∈ K), where HV is the market value
of the individual cost associated with travel time.

The TNHP is formulated as the following bi-level model:

max
t,y,x

PO

(
t,y,x

)
(1a)

subject to: c>y ≤ B (1b)

0 ≤ t ≤ T, and y ∈ {0, 1}|AN | (1c)

x ∈ Ψ(t,y) (1d)

where T = [T v
a : a ∈ A, v ∈ V] is the vector of maximum tolls; the constraint (1b)

limit the number of new links that can be constructed according to the investment budget
B; constraints (1c) set variables domains – i.e. non-negativity and upper bounds on toll
variables, and integrality on capacity expansion.

The vehicle best response Ψ(t,y) results from the solution of the following multicommod-
ity network flow problem:
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Ψ(t,y) = argmax
x

PV

(
t,y, [xv,k : v ∈ V, k ∈ K]

)
(2a)

subject to: Nxv,k = wv,k for v ∈ V, k ∈ Kv (2b)

rv
∑
k∈Kv

xv,k ≤ Q[1; y], for v ∈ V (2c)

xv,k ≥ 0, for v ∈ V, k ∈ Kv (2d)

In (2b), xv,k = [xv,ka : a ∈ A] ∈ R|A| is the vector of vehicle flow of type (v, k) cir-
culating through the network, N ∈ {−1, 0, 1}|N |×|A| is the incidence matrix, and vector

wv,k = [wv,k
i : i ∈ N ] corresponds to the in-flow and out-flow at each node. In (2c), matrix

Q ∈ R|A|×|A| is diagonal with elements qa denoting the capacity of link a with respect to a
established type of vehicle v ∈ V , i.e. the maximum number of vehicles of a established type
v which can pass through a. Vector [1; y] ∈ {0, 1}|A| contains |A|−|AN | consecutive ones and
|AN | binary values, corresponding to the operator’s decision about the creation of new links
ya, for a ∈ AN . Finally, constant rv normalizes the vehicle units in terms of a established
vehicle type.

The MINLBP (1)–(2a) is approximated by a mixed-integer linear problem, based on the
inclusion of a large collection of binary variables and constraints to linearize the convex
function ua(xv,ka : v ∈ V, k ∈ K) and the bi-linear terms resulting from the single level
reformulation. The accuracy of the approximation can be made arbitrarily high by allowing
a more granular segmentation of the non-linear terms (i.e. the inclusion of a larger amount
of binary variables and constraints).

Decomposition approaches are proposed to deal with the resulting large scale mixed-
integer linear problem with different levels of granularity in the reformulation–linearization.
This shows the capability of the proposed approach to provide accurate solutions (small GAP
in comparison with their high granularity counterpart) in a small computational time. The
proposed decomposition approaches combine the standard ILO-CPLEX implementation of
the Branch & Cut with the Benders cutting-plane approach.

A case study based on an extended road network of Sioux Falls city is used for validation.

Keywords: Road Network Design, Toll Setting, Hazmat Transportation, mixed-integer
non-linear bi-level problem, approximation, single level reformulation
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